Advertisement

Hierarchical Data Representations Based on Planar Voronoi Diagrams

  • Shirley Schussman
  • Martin Bertram
  • Bernd Hamann
  • Kenneth I. Joy
Part of the Eurographics book series (EUROGRAPH)

Abstract

Multiresolution representation of high-dimensional scattered data is a fundamental problem in scientific visualization. This paper introduces a data hierarchy of Voronoi diagrams as a versatile Solution. Given an arbitrary set of points in the plane, our goal is the construction of an approximation hierarchy using the Voronoi diagram as the essential building block. We have implemented two Voronoi diagram-based algorithms to demonstrate their usefulness for hierarchical scattered data approximation. The first algorithm uses a constant function to approximate the data within each Voronoi cell, and the second algorithm uses the Sibson interpolant [14].

Keywords

Voronoi Diagram Global Error Point Insertion Voronoi Cell Tetrahedral Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Cignoni, L. De Floriani, C. Montoni, E. Puppo, and R. Scopigno. Multiresolution modeling and visualization of volume data based on simplicial complexes. In Arie Kaufman and Wolfgang Krueger, editors, 1994 Symposium on Volume Visualization,, pages 19-26. ACM SIGGRAPH, October 1994.Google Scholar
  2. 2.
    L. De Floriani, P. Marzano, and E. Puppo. Hierarchical terrain models: Survey and formalization. In Proc. IEEE Sympos. Applied Comput., pages 323-327, 1994.Google Scholar
  3. 3.
    O. Devillers. Improved incremental randomized Delaunay triangulation. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 106-115, 1998.Google Scholar
  4. 4.
    Gerald Farin. Surfaces over dirichlet tessellations. Computer Aided Geometric Design, 7(1-4):281-292, June 1990.Google Scholar
  5. 5.
    R. Franke and G.M. Nielson. Scattered data interpolation and applications: A tutorial and survey. In H. Hagen and D. Roller, editors, Geometric Modeling. Springer-Verlag, 1991.Google Scholar
  6. 6.
    Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 209-216. ACM SIGGRAPH, Addison Wesley, August 1997.Google Scholar
  7. 7.
    Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 99-108. ACM SIGGRAPH, Addison Wesley, August 1996.Google Scholar
  8. 8.
    Hugues Hoppe. View-dependent refinement of progressive meshes. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 189-198. ACM SIGGRAPH, Addison Wesley, August 1997.Google Scholar
  9. 9.
    Hugues Hoppe. New quadric metric for simplifying meshes with appearance attributes. In David Ebert, Markus Gross, and Bernd Hamann, editors, IEEE Visualization 99, pages 59-67. IEEE, November 1999.Google Scholar
  10. 10.
    Arne Maus. Delaunay triangulation and the convex hull of n points in expected linear time. BIT, 24(2): 151-163, 1984.Google Scholar
  11. 11.
    Jovan Popovic and Hugues Hoppe. Progressive simplicial complexes. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 217-224. ACM SIGGRAPH, Addison Wesley, August 1997.Google Scholar
  12. 12.
    Kevin J. Renze and James H. Oliver. Generalized unstructured decimation. IEEE Computer Graphics & Applications, 16(6)24–32, November 1996.CrossRefGoogle Scholar
  13. 13.
    William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle meshes. Computer Graphics, 26(2)65–70 July 1992.CrossRefGoogle Scholar
  14. 14.
    R. Sibson.Locally equiangular triangulation. The Computer Journal, 21:243–245 1978.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Oliver G. Staadt and Markus H. Gross. Progressive tetrahedralizations. In David Ebert, Hans Hagen, änd Holly Rushmeier, editors, Proceedings of Visualization 98, pages 397-402. IEEE Computer Society Press, Los Alamitos, California, October 1998.Google Scholar
  16. 16.
    Issac J. Trotts, Bernd Hamann, and Kenneth I. Joy. Simplification of tetrahedral meshes. IEEE Transactions on Visualization and Computer Graphics, 5(3): 224–237, 1999.CrossRefGoogle Scholar
  17. 17.
    Issac J. Trotts, Bernd Hamann, Kenneth I. Joy, and David F. Wiley. Simplification of tetrahedral meshes. In David Ebert, Hans Hagen, and Holly Rushmeier, editors, Proceedings of Visualization 98, pages 287-296. IEEE Computer Society Press, Los Alamitos, California, October 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Shirley Schussman
    • 1
  • Martin Bertram
    • 1
  • Bernd Hamann
    • 1
  • Kenneth I. Joy
    • 1
  1. 1.Center for Image Processing and Integrated Computing (CIPIC), Department of Computer ScienceUniversity of California at DavisDavisUSA

Personalised recommendations