Drawing Relational Schemas

  • Giuseppe Di Battista
  • Walter Didimo
  • Maurizio Patrignani
  • Maurizio Pizzonia
Conference paper
Part of the Eurographics book series (EUROGRAPH)


A wide number of practical applications would benefit from automatically generated graphical representations of relational schemas, in which tables are represented by boxes, and table attributes correspond to distinct stripes inside each table. Links, connecting two attributes of two different tables, represent relational constraits or join paths, and may attach arbitrarily to the left or to the right side of the stripes representing the attributes. To our knowledge no drawing technique is available to automatically produce diagrams in such strongly constrained drawing Convention. In this paper we provide a polynomial time algorithm solving this problem and test its efficiency and effectiveness against a large test suite.


Test Suite Polynomial Time Algorithm Relational Schema Graph Drawing Drawing Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gdtoolkit: An object-oriented library for handling and drawing graphs, 1999. Third University of Rome, http://www.dia.uniroma3.it/~gdt.Google Scholar
  2. 2.
    P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems: Concepts, Languages and Architetures. McGraw Hill, London, United Kingdom, 1999.Google Scholar
  3. 3.
    C. Batini, E. Nardelli, M. Talamo, and R. Tamassia. GINCOD: a graphical tool for conceptual design of data base applications. In A. Albano, V.D. Antonellis, and A.D. Leva, editors, Computer Aided Data Base Design, pages 33–51. North- Holland, New York, NY, 1985.Google Scholar
  4. 4.
    C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data flow diagrams. IEEE Trans. Softw. Eng., SE-12(4)538–546 1986.Google Scholar
  5. 5.
    C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entityrelationship diagrams. Journal of Systems and Software, 4:163–173, 1984.CrossRefGoogle Scholar
  6. 6.
    G.D. Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and quasiupward drawings with vertices of arbitrary size. In J. Kratochvil, editor, Graph Drawing (Proc. GD ’99), Lecture Notes Comput. Sei. Springer-Verlag, 1999. to appear.Google Scholar
  7. 7.
    G.D. Battista, S. Diglio, M. Lenti, and M. Simoncelli. Queryviewer: A java system for drawing the result of a query, 1998. Third University of Rome, http://www.dia.uniroma3.it/~lenti/QueryViewer/.Google Scholar
  8. 8.
    P. Bertolazzi, G. Di Battista, and W. Didimo. Quasi-upward planarity. In S.H. Whitesides, editor, Graph Drawing (Proc. GD ’98), volume 1547 of Lecture Notes Comput. Sei., pages 15-29. Springer-Verlag, 1998.Google Scholar
  9. 9.
    B. Chazelle. The bottom-left bin-packing heuristic: an efficient implementation. IEEE Trans. Comput., C-32:697–707 1983.CrossRefGoogle Scholar
  10. 10.
    N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar graphs using PQ-trees. J. Comput. Syst. Sei., 30(l)54–76, 1985.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    G. DiBattista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.MATHGoogle Scholar
  12. 12.
    U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F.J. Brandenburg, editor, Graph Drawing (Proc. GD ’95), volume 1027 of Lecture Notes Comput. Sei., pages 254-266. Springer-Verlag, 1996.Google Scholar
  13. 13.
    F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.Google Scholar
  14. 14.
    J. Hopcroft and R.E. Tarjan. Efficient planarity testing. J. ACM, 21(4)549–568, 1974.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    K. Jansen.An approximation scheme for bin packing with conflicts. In Proc. 6th Scand. Workshop Algorithm Theory, volume 1432 of Lecture Notes Comput. Sei., pages 35-46. Springer-Verlag, 1998.Google Scholar
  16. 16.
    K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and geometric Computing. Commun. ACM, 38(1)96–102, 1995.CrossRefGoogle Scholar
  17. 17.
    R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAMJ. Comput., 16(3)421–444, 1987.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(l)61–79 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Giuseppe Di Battista
    • 1
  • Walter Didimo
    • 1
  • Maurizio Patrignani
    • 1
  • Maurizio Pizzonia
    • 1
  1. 1.Dipartimento di Informatica e AutomazioneUniversitä di Roma TreRomaItaly

Personalised recommendations