Advertisement

Improving Angular Resolution in Visualizations of Geographic Networks

  • Ulrik Brandes
  • Galina Shubina
  • Roberto Tamassia
Part of the Eurographics book series (EUROGRAPH)

Abstract

In visualizations of large-scale transportation and communications networks, node coordinates are usually fixed to preserve the underlying geography, while links are represented as geodesics for simplicity. This often leads to severe readability problems due to poor angular resolution, i.e. small angles formed by lines converging in a node. We present a new method using automatically routed eubie curves that both preserves node coordinates and eliminates the resolution problem. The approach is applied to representations in the plane and on the sphere, showing European train connections and Internet traffic, respectively.

Keywords

Planar Graph Angular Resolution Angular Difference Curve Edge Bezier Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Abello and E.R. Gansner. Short and smooth polygonal paths. Proc. 3rd Latin American Symp. Theoretical Informatics (LATIN ’98), LNCS vol. 1380, pp. 151-162. Springer, 1998.Google Scholar
  2. 2.
    N. Amenta, S. Levy, T. Munzner, and M. Phillips. Geomview: A system for geometric visualization. In Proc. llth ACM Ann. Symp. Computational Geometry (SoCG ’95), pp. C12-13. ACM, 1995.Google Scholar
  3. 3.
    R.A. Becker, S.G. Eick, and A.R. Wilks. Visualizing network data. IEEE Transactions on Visualization and Graphics, 1(1): 16–28, 1995.CrossRefGoogle Scholar
  4. 4.
    P. Bézier. Numerical Control. John Wiley &; Sons, 1972.Google Scholar
  5. 5.
    W. Boehm. On cubics: A survey. Computer Graphics and Image Processing, 19:201–226 1982.MATHCrossRefGoogle Scholar
  6. 6.
    U. Brandesand D. Wagner. Using graph layout to visualize train interconnection data. Proc. 6th Intl. Symp. Graph Drawing (GD ’98), LNCS vol. 1547, pp. 44-56. Springer, 1998.Google Scholar
  7. 7.
    K.C. Cox, S.G. Eick, and T. He. 3D geographic network displays. ACM SIGMOD Record, 24(4):50–54, 1996.CrossRefGoogle Scholar
  8. 8.
    D.P. Dobkin, E.R. Gansner, E. Koutsofios, and S.C. North. Implementing a general-purpose edge router. Proc. 5th Intl. Symp. Graph Drawing (GD ’97), LNCS vol. 1353, pp. 262-271. Springer, 1997.Google Scholar
  9. 9.
    M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A. Symvonis, E. Welzl, and G. Woeginger. Drawing graphs in the plane with high resolution. SIAM Journal on Computing, 22(5)1035–1052 1993.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    E.R. Gansner and S.C. North. Improved force-directed layouts. Proc. 6th Intl. Symp. Graph Drawing (GD ’98), LNCS vol. 1547, pp. 364-373. Springer, 1998.Google Scholar
  11. 11.
    A. Garg. On drawing angle graphs. Proc. 2nd Intl. Symp. Graph Drawing (GD ’94), LNCS vol. 894, pp. 84-95. Springer, 1995.Google Scholar
  12. 12.
    A. Garg and R. Tamassia.Planar drawings and angular resolution: Algorithms and bounds. Proc. 2nd European Symp. Algorithms (ESA ’94), LNCS vol. 855, pp. 12-23. Springer, 1994.Google Scholar
  13. 13.
    M.T. Goodrich and C.G. Wagner. A framework for drawing planar graphs with curves and polylines. Proc. 6th Intl. Symp. Graph Drawing (GD ’98), LNCS vol. 1547, pp. 153-166. Springer, 1998.Google Scholar
  14. 14.
    C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular resolution. Proc. 6th Intl. Symp. Graph Drawing (GD ’98), LNCS vol. 1547, pp. 167-182. Springer, 1998.Google Scholar
  15. 15.
    H. Hagen. Bezier-curves with curvature and torsion continuity. Rocky Mountain Journal of Mathematics, 16(3)629–638 1986.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    G. Kant. Drawing planar graphs using the canonical ordering.Algorithmica, 16:4–32 1996.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    K.A. Lyons, H. Meijer, D. Rappaport. Algorithms for Cluster busting in anchored graph drawing. Journal on Graph Algorithms and Applications, 2(1)1–24 1998.MathSciNetGoogle Scholar
  18. 18.
    S. Malitzand A. Papakostas. On the angular resolution of planar graphs. SIAM Journal on Discrete Mathematics, 7(2) 172–183, 1994.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial Geometric Computing. Cambridge University Press, 1999. http://www.mpi-sb.mpg.de/LEDA/.Google Scholar
  20. 20.
    T. Munzner, E. Hoffman, K. Claffy, and B. Fenner.Visualizing the global topology of the MBone. Proc. 1996 IEEE Symp. Information Visualization, pp. 85-92, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Galina Shubina
    • 2
  • Roberto Tamassia
    • 2
  1. 1.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations