Advertisement

A Case Study of Isosurface Extraction Algorithm Performance

  • Philip M. Sutton
  • Charles D. Hansen
  • Han-Wei Shen
  • Dan Schikore
Part of the Eurographics book series (EUROGRAPH)

Abstract

Isosurface extraction is an important and useful visualization method. Over the past ten years, the field has seen numerous isosurface techniques published, leaving the user in a quandary about which one should be used. Some papers have published complexity analysis of the techniques, yet empirical evidence comparing different methods is lacking. This case study presents a comparative study of several representative isosurface extraction algorithms. It reports and analyzes empirical measurements of execution times and memory behavior for each algorithm. The results show that asymptotically optimal techniques may not be the best choice when implemented on modern Computer architectures

Keywords

IEEE Computer Society Lattice Element Memory Behavior Memory Overhead Marching Cube Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. Fast isocontouring for improved interactivity. In 1996 Symposium on Volume Visualization, pages 39-46. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1996.Google Scholar
  2. 2.
    P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurface extraction from irregulär volume data. In 1996 Symposium on Volume Visualization, pages 31-38. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1996.Google Scholar
  3. 3.
    Paolo Cignoni, Paola Marino, Claudio Montani, Enrico Puppo, and Roberto Scopigno. Speeding up isosurface extraction using interval trees. IEEE Transactions on Visualization and Computer Graphics, 3(2): 158–170, April 1997.CrossRefGoogle Scholar
  4. 4.
    Jean M. Favre. Towards efficient visualization support for single-block and multi-block datasets. In Roni Yagel and Hans Hagen, editors, Proceedings of Visualization 1997, pages 423–428. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1997.Google Scholar
  5. 5.
    Philip D. Heermann. Production visualization for the asci one teraflops machine. In David Ebert, Hans Hagen, and Holly Rushmeier, editors, Proceedings of Visualization 1998, pages 459-462. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1998.Google Scholar
  6. 6.
    Takayuki Itoh and Koji Koyamada. Automatic isosurface propagation using an extrema graph and sorted boundary cell lists. IEEE Transactions on Visualization and Computer Graphics, l(4):319–327, December 1995.CrossRefGoogle Scholar
  7. 7.
    Takayuki Itoh, Yasushi Yamaguchi, and Koji Koyamada. Volume thinning for automatic isosurface propagation. In Roni Yagel and Gregory M. Nielson, editors, Proceedings of Visualization 1996, pages 303-310. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1996.Google Scholar
  8. 8.
    Marco Lanzagorta, Milo V. Kral, J.Edward Swan II, George Spanos, Rob Rosenberg, and Eddy Kuo. Three-dimensional visualization of microstructures. In David Ebert, Hans Hagen, and Holly Rushmeier,editors, Proceedings of Visualization 1998, pages 487-490. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1998.Google Scholar
  9. 9.
    Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson. A near optimal isosurface extraction algorithm using the span space. IEEE Transactions on Visualization and Computer Graphics, 2(1):73–84, 1996.CrossRefGoogle Scholar
  10. 10.
    William E. Lorensen. Marching through the visible man. In Gregory M. Nielson and Deborah Silver, editors, Proceedings of Visualization 1995, pages 368-373. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1995.Google Scholar
  11. 11.
    William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. In Maureen C. Stone, editor, Computer Graphics, volume 21, pages 163-169. ACM SIGGRAPH, ACM SIGGRAPH, July 1987.Google Scholar
  12. 12.
    Colin R.F. Monks, Patricia J. Crossno, George Davidson, Constantine Pavlakos, Abraham Kupfer, Claudio Silva, and Brian Wylie. Three dimensional visualization of proteins in cellular interactions. In Roni Yagel and Gregory M. Nielson, editors, Proceedings of Visualization 1996, pages 363-366. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1996.Google Scholar
  13. 13.
    S. Parker, M. Parker, Y. Livnat, P. Sloan, C. Hansen, and P. Shirley. Interactive ray tracing for volume visualization. IEEE Transactions on Visualization and Computer Graphics, 5(3)238–250, July 1999.CrossRefGoogle Scholar
  14. 14.
    Han-Wei Shen. Isosurface extraction in time-varying fields using a temporal hierarchical index tree. In David Ebert, Hans Hagen, and Holly Rushmeier, editors, Proceedings of Visualization 1998, pages 159-164. IEEE Computer Society, ACM Press, New York, NY, October 1998.Google Scholar
  15. 15.
    Han-Wei Shen, Charles D. Hansen, Yarden Livnat, and Christopher R. Johnson. Isosurfacing in span space with utmost efficiency (issue). In Roni Yagel and Gregory M. Nielson,editors, Proceedings of Visualization 1996, pages 287-294. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1996.Google Scholar
  16. 16.
    Philip M. Sutton and Charles D. Hansen. Accelerated isosurface extraction in time-varying fields. Submitted to IEEE Transactions on Visualization and Computer Graphics, 2000.Google Scholar
  17. 17.
    Ulf Tiede, Thomas Schiemann, and Karl Heinz Höhne. High quality rendering of attributed volume data. In David Ebert, Hans Hagen, and Holly Rushmeier, editors, Proceedings of Visualization 1998, pages 255-262. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos, CA, October 1998.Google Scholar
  18. 18.
    Marc vanKreveld, René vanOostrum, Chandrajit Bajaj, Valerio Pascucci, and Dan Schikore. Contour trees and small seed sets for isosurface traversal. In Proceedings of the Thirteenth Annual Symposium on Computational Geometry, pages 212–220. ACM Special Interest Groups for Graphics and Algorithms and Computation Theory, ACM Press, New York, NY, June 1997.CrossRefGoogle Scholar
  19. 19.
    Jane Wilhelms and Allen vanGelder. Octrees for faster isosurface generation. ACM Transactions on Graphics, 11(3):201–227, July 1992.CrossRefMATHGoogle Scholar
  20. 20.
    Geoff Wyvill, Craig McPheeters, and Brain Wyvill. Data structure for soft objects. The Visual Computer, 2(4):227–234, 1986.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Philip M. Sutton
    • 1
  • Charles D. Hansen
    • 1
  • Han-Wei Shen
    • 2
  • Dan Schikore
    • 3
  1. 1.Department of Computer ScienceUniversity of UtahSalt Lake CityUSA
  2. 2.Computer and Information Science DepartmentThe Ohio State UniversityColumbusUSA
  3. 3.CASCLawrence Livermore LaboratoriesLivermoreUSA

Personalised recommendations