Advertisement

Variational Approach to Vector Field Decomposition

  • Konrad Polthier
  • Eike Preuß
Part of the Eurographics book series (EUROGRAPH)

Abstract

For the feature analysis of vector fields we decompose a given vector field into three components: a divergence-free, a rotation-free, and a harmonic vector field. This Hodge-type decomposition splits a vector field using a variational approach, and allows to locate sources, sinks, and vortices as extremal points of the potentials of the components. Our method applies to discrete tangential vector fields on surfaces, and is of global nature. Results are presented of applying the method to test cases and a CFD flow.

Keywords

Vector Field Edge Midpoint Line Integral Convolution Vortex Detection Discrete Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Banks and B. Singer. A predictor-corrector technique for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics, 1(2) 151–163, June 1995.CrossRefGoogle Scholar
  2. 2.
    B. Cabral and L.C. Leedom. Imaging vector fields using line integral convolution. SIGGRAPH 93 Conference Proceedings, 27:263–272, 1993.CrossRefGoogle Scholar
  3. 3.
    W.C. de Leeuv and F.H. Post.A statistic view on vector fields. In M. Göbel, H. Müller, and B. Urban,editors, Visualization in Scientific Computing, Eurographics, pages 53 - 62, Wien, 1995. Springer Verlag.Google Scholar
  4. 4.
    W.C. de Leeuv and R. van Liere. Visualization of global flow structures using multiple levels of topology. In E. Gröller, H. Löffelmann, and W. Ribarsky, editors, Data Visualization ’99, pages 45 - 52. Springer Verlag, 1999.Google Scholar
  5. 5.
    J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. Computer, 22(8)27–36, August 1989.CrossRefGoogle Scholar
  6. 6.
    D. Kenwright and R. Haimes. Vortex identification - applications in aerodynamics: A case study. In R. Yagel and H. Hagen,editors, Proc. Visualization ’97, pages 413-416, 1997.Google Scholar
  7. 7.
    D.N. Kenwright, C. Henze, and C. Levit. Feature extraction of Separation and attachment lines. IEEE Trans, on Visualization and CG, 5(2)135–144 1999.CrossRefGoogle Scholar
  8. 8.
    L. Khouas, C. Odet, and D. Friboulet. 2d vector field visualization using furlike texture. In E. Gröller, H. Löffelmann, and W. Ribarsky, editors, Data Visualization ’99, pages 35-44. Springer Verlag, 1999.Google Scholar
  9. 9.
    K. Polthier. Hodge decomposition of vectorfields. in preparation, 1999.Google Scholar
  10. 10.
    K. Polthier and M. Schmies. Straightest geodesics on polyhedral surfaces. In H.-C. Hege and K. Polthier, editors, Mathematical Visualization, pages 135-150. Springer Verlag, Heidelberg, 1998.Google Scholar
  11. 11.
    M. Roth and R. Peikert. Flow visualization for turbomachinery design. In R. Yagel and G. Nielson, editors, Proc. Visualization ’96, pages 381-384. IEEE Computer Society Press, 1996.Google Scholar
  12. 12.
    M. Roth and R. Peikert. A higher-order method for finding vortex core lines. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. Visualization ’98, pages 143-150. IEEE Computer Society Press, 1998.Google Scholar
  13. 13.
    I. Sadarjoen, F. Post, B. Ma, D. Banks, and H. Pagendarm. Selective visualization of vortices in hydrodynamic flows. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proc. Visualization ’98, pages 419 - 423. IEEE Computer Society Press, 1998.Google Scholar
  14. 14.
    I. Sadarjoen and F.H. Post.Geometric methods for vortex extraction. In E. Gröller, H. Löffelmann, and W. Ribarsky, editors, Data Visualization ’99, pages 53-62. Springer Verlag, 1999.Google Scholar
  15. 15.
    G. Scheuermann, H. Hagen, and H. Krüger. Clifford algebra in vector field visualization. In H.-C. Hege and K. Polthier,editors, Mathematical Visualization, pages 343-351. Springer-Verlag, Heidelberg, 1998.Google Scholar
  16. 16.
    C. Teitzel. Adaptive methods and hierarchical data structures for interactive three-dimensional flow visualization. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, IMMD 32/09, Computer Graphics Group, September 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Konrad Polthier
    • 1
  • Eike Preuß
    • 1
  1. 1.Technische Universität BerlinGermany

Personalised recommendations