Skip to main content

The immunological microenvironment in the CNS: implications on neuronal cell death and survival

  • Conference paper
Advances in Dementia Research

Abstract

Microenvironmental factors have a profound influence on resident cell populations and their ability to modulate an immune response. The unique central nervous system (CNS) microenvironment has important effects in this regard, resulting in the establishment of immune privilege. The immune response in the CNS is under tight control of bipolar regulatory mechanisms. Neurons have a suppressive potential, which prevents and limits the formation of inflammatory responses. In contrast, activated lymphocytes, which can invade the CNS, deposit potentially pro-inflammatory mediators. The balance between pro- and anti-inflammatory factors determines localization, intensity and course of immune responses in the brain. Thus, an overwhelming invasion of activated lymphocytes, which may have emerged from a recent anti-microbial immune response, may create inflammation in intact parts of the CNS. In contrast, in compromised brain areas, much weaker proinflammatory forces are required to create the same effect. Thus, in degenerative brain lesions, inflammatory infiltrates may be formed easily.

Immune cell invasion and expression of immune molecules in degenerative CNS disease could exert a variety of actions on the neurons. In the first instance, activation of the local immune response could be harmful to resident brain cells, possibly resulting in nueronal cell death. Alternatively, immune cell-derived mediators could protect and support the regeneration of damaged neurons. Recently, it has been realized that normal inflammoery cells (lymphocytes and macrophages) produce neutrophic factors. In addition, pro-inflammatory cytokines released by invading immunce cells may have a role in neuroprotection. Infiltration of degenerative brain areas by inflamatory cells could thus reflect a beneficial process encouraging neuronal survival and local cell regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB (1998) Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 4: 1321 – 1324

    Article  PubMed  CAS  Google Scholar 

  • Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2: 788 – 794

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12: 139 – 153

    Article  PubMed  CAS  Google Scholar 

  • Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA 90: 10984 – 10988

    Article  PubMed  CAS  Google Scholar 

  • Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16: 2508 – 2521

    PubMed  CAS  Google Scholar 

  • Finsen BR, Tönder N, Xavier GF, Sörensen JC, Zimmer J (1993) Induction of microglial immunomolecules by anterogradely degenerating mossy fibers in the rat hippocam- pal formation. J Chem Neuroanat 6: 276 – 275

    Article  Google Scholar 

  • Frade JM, Barde YA (1998) Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20: 35 – 41

    Article  PubMed  CAS  Google Scholar 

  • Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglia cells. J Neurochem 70: 699 – 707

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF (1991) Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol 1: 97 – 106

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Ueno K, Hiserodt JC, Schmidt RE (1992) Exogenously-induced, natural killer cell-mediated neuronal killing: A novel pathogenetic mechanism. J Exp Med 176: 811 – 817

    Article  PubMed  CAS  Google Scholar 

  • Itagaki S, McGeer PL, Akiyama H (1988) Presence of T-cytotoxic suppressor and leukocyte common antigen-positive cells in Alzheimer’s disease brain tissue. Neurosci Lett 91: 259 – 264

    Article  PubMed  CAS  Google Scholar 

  • Johnson RT, Griffin DE, Kirsch RL, Wolinsky JS, Rodenbeck S, de Soriano IL, Vaisberg A (1984) Measles encephalomyelitis — Clinical and immunological studies. N Engl J Med 310: 137 – 141

    Article  PubMed  CAS  Google Scholar 

  • Kalaria RN (1993) The immunopathology of Alzheimer’s disease and some related disorders. Brain Pathol 3: 333 – 347

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L, Klinkert WEF, Kolbeck R, Hoppe E, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells and monocytes produce brain-derived neurotrophic factor (BDNF) in vitro and in brain lesions: A neuroprotective role of inflammation? J Exp Med 189: 865 – 870

    Article  PubMed  CAS  Google Scholar 

  • Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330: 658 – 659

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti CF, Brück W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 6: 259 – 274

    Article  PubMed  CAS  Google Scholar 

  • Maehlen J, Olsson T, Zachau A, Klareskog L, Kristenssen K (1989) Local enhancement of major histocompatibility complex (MHC) class I and class II expression and cell infiltration in experimental allergic encephalomyelitis around axotomized motor neurons. J Neuroimmunol 23: 125 – 132

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, McGeer EG (1988) Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 76: 550 – 557

    Article  PubMed  CAS  Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5: 49 – 55

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Wekerle H (1998) Neuronal control of the immune response in the central nervous system: Linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol 58: 1 – 9

    Article  Google Scholar 

  • Neumann H, Cavalié A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269: 549 – 552

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Boucraut J, Hahnel C, Misgeld T, Wekerle H (1996) Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 8: 2582 – 2590

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Schmidt H, Wilharm E, Behrens L, Wekerle H (1997) Interferon-γ gene expression in sensory neurons: Evidence for autocrine gene regulation. J Exp Med 186: 2023 – 2031

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: Involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 95: 5779 – 5784

    Article  PubMed  CAS  Google Scholar 

  • Olsson T, Diener P, Ljungdahl Ã…, Höjeberg B, Van der Meide P, Kristensson K (1992) Facial nerve transection causes expansion of myelin autoreactive T cells in regional lymph nodes and T cell homing to the facial nucleus. Autoimmunity 13: 117 – 126

    Article  PubMed  CAS  Google Scholar 

  • Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-D-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22: 2429 – 2436

    Article  PubMed  CAS  Google Scholar 

  • Rabchevsky AG, Streit WJ (1997) Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47: 34 – 48

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Jones LL, Kloss CUA, Werner A, Neumann H, Kreutzberg GW (1998) Immune surveillance in the injured nervous system: T lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18: 5804 – 5816

    PubMed  CAS  Google Scholar 

  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous marophages results in partial recovery of paraplegic rats. Nat Med 4: 814 – 821

    Article  PubMed  CAS  Google Scholar 

  • Rensing-Ehl A, Malipiero U, Irmler M, Tschopp J, Constam D, Fontana A (1996) Neurons induced to express major histocompatibility complex class I antigen are killed via the perforin and not the Fas (Apo-l/CD95) pathway. Eur J Immunol 26: 2271 – 2274

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Solomon A, Lavie V, Ben-Bassat S, Belkin M, Cohen A (1991) Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Res 545: 334 – 338

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1989a) Expression of la antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 105: 115 – 126

    Article  CAS  Google Scholar 

  • Streit WJ, Graeber MB, Kreutzberg GW (1989b) Peripheral nerve lesion produces increased levels of major histocompatibility complex antigens in the central nervous system. J Neuroimmunol 21: 117 – 123

    Article  CAS  Google Scholar 

  • Tchélingérian J-L, Quinonero J, Booss J, Jacque C (1993) Localization of TNF and IL-1 immunoreactivities in striatal neurons after surgical injury to the hippocampus. Neuron 10: 213 – 224

    Article  PubMed  Google Scholar 

  • Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270: 593-598 Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9: 271 – 277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this paper

Cite this paper

Neumann, H. (2000). The immunological microenvironment in the CNS: implications on neuronal cell death and survival. In: Jellinger, K., Schmidt, R., Windisch, M. (eds) Advances in Dementia Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6781-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6781-6_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83512-8

  • Online ISBN: 978-3-7091-6781-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics