Advertisement

Cerebrolysin® reduces microglial activation in vivo and in vitro: a potential mechanism of neuroprotection

  • X. Anton Álvarez
  • V. R. M. Lombardi
  • L. Fernández-Novoa
  • M. García
  • C. Sampedro
  • A. Cagiao
  • R. Cacabelos
  • M. Windisch
Conference paper

Abstract

Neurotrophins, such as NGF, BDNF and NT-3 play a regulatory role on the function of microglial cells in vivo and in vitro, and the identification of new compounds with neurotrophic properties is becoming a new strategy for the prevention and/or treatment of neurodegenerative disorders. In this study we describe the use of two different models to demonstrate the ability of Cerebrolysin® to reduce microglial activation. The results of these in vitro and in vivo studies indicate that Cerebrolysin® might exert a neuroimmunotrophic activity reducing the extent of inflammation and accelerated neuronal death under pathological conditions such as those observed in neurodegenerative diseases.

Keywords

Microglial Activation Kainic Acid Chronic Neuroinflammation Microglial Cell Culture Solid Phase Sandwich ELISA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez XA, Franco A, Fernández-Novoa L, Cacabelos R (1996) Blood levels of histamine, IL-1β and TNF-α in patients with mild to moderate Alzheimer’s disease. Mol Chem Neuropathol 29: 237 – 252PubMedCrossRefGoogle Scholar
  2. Cacabelos R, Barquero M, García P, Álvarez XA, Varela de Seijas E (1991) Cerebrospinal fluid interleukin-lβ (IL-β) in Alzheimer’s disease and neurological disorders. Meth Find Exp Clin Pharmacol 13: 455 – 458Google Scholar
  3. Cacabelos R, Álvarez XA, Fernández-Novoa L, Franco-Maside A, Mangues R, Pellicer A, Nishimura T (1994) Brain interleukin-lβ in Alzheimer’s disease and vascular dementia. Meth Find Exp Clin Pharmacol 16: 141 – 151Google Scholar
  4. Davis ES, Foster TD, Thomas WE (1994) Cellular forms and functions of brain microglia. Brain Res Bull 34: 73 – 78PubMedCrossRefGoogle Scholar
  5. Dickson DW, Mattiace LA, Kure K, Hutchins K, Lyman WD, Brosnan CF (1991) Biology of disease. Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab Invest 64: 135 – 155PubMedGoogle Scholar
  6. Dickson DW, Lee SS, Mattiace LA, Yen SC, Brosnan C (1993) Microglia and cytokines in neurological disease, with special references to AIDS and Alzheimer’s disease. Glia 7: 75 – 83PubMedCrossRefGoogle Scholar
  7. Fagarasan MO, Aisen PS (1996) IL-1 and anti-inflammatory drugs modulate A beta cytotoxicity in PC12 cells. Brain Res 723: 231 – 234PubMedCrossRefGoogle Scholar
  8. Hauss Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 780: 294 - 303CrossRefGoogle Scholar
  9. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39: 151 – 170PubMedCrossRefGoogle Scholar
  10. Lee GJ (1993) The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci 114: 119 – 122CrossRefGoogle Scholar
  11. Lombardi VRM, Garcia M, Cacabelos R (1998a) Microglial activation induced by factor(s) contained in sera from Alzheimer-related ApoE genotypes. J Neurosci Res 54: 539 – 553CrossRefGoogle Scholar
  12. Lombardi VRM, Maneiro E, Cacabelos R (1998b) Apoptosis in neurodegenerative dis-eases: The neuroimmune network. Neurogeront Neurogeriat 2: 105 – 124Google Scholar
  13. Lorton D, Kocsis JM, King L, Madden K, Brunden KR (1996) beta-Amyloid induces increased release of interleukin-1 beta from lipopolysaccharide-activated human monocytes. J Neuroimmunol 67: 21–29Google Scholar
  14. Maneiro E, Lombardi VRM, Cacabelos R (1996) Rat cell cultures: experimental model to study neurodegenerative disorders and new pharmacological compounds. Meth Find Exp Clin Pharmacol 18: 615 – 645Google Scholar
  15. Maneiro E, Lombardi VRM, Cacabelos R (1998) Neuroimmune dysfunction in Alzheimer’s disease. Neurogeront Neurogeriat 2: 77 – 104Google Scholar
  16. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substancia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285 – 1291PubMedGoogle Scholar
  17. Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglia cells by beta amyloid protein and interferon-gamma. Nature 374: 647 – 650PubMedCrossRefGoogle Scholar
  18. Miguel-Hidalgo JJ, Cacabelos R (1998) β-Amyloid(l-40)-induced neurodegeneration in the rat hippocampal neurons of the CA1 subfield. Acta Neuropathol 95: 455–465Google Scholar
  19. Nguyen KT, Deak T, Owens SM, Kohno T, Fleshner M, Watkins LR, Maier SF (1998) Exposure to acute stress induces brain interleukin-lbeta protein in the rat. J Neurosci 18: 2239 – 2246PubMedGoogle Scholar
  20. Panegyres PK, Hughes J (1998) The neuroprotective effects of the recombinant interleukin-1 receptor antagonist rhlL-lra after excitotoxic stimulation with kainic acid and its relationship to the amyloid precursor protein gene. J Neurol Sci 154: 123 – 132PubMedCrossRefGoogle Scholar
  21. Rosenwasser LJ (1998) Biologic activities of IL-1 and its role in human disease. J All Clin Immunol 102: 344 – 350CrossRefGoogle Scholar
  22. Sigurdsson EM, Lee JM, Dong XW, Hejna MJ, Lorens SA (1997) Bilateral injections of amyloid-beta 25-35 into the amygdala of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiol Aging 18: 591 – 608PubMedCrossRefGoogle Scholar
  23. Takao T, Nagano I, Tojo C, Takemura T, Makino S, Hashimoto K, De Souza EB (1996) Age-related reciprocal modulation of interleukin-lbeta and interleukin-1 receptors in the mouse brain-endocrine-immune axis. Neuroimmunomodulation 3: 205 – 122PubMedCrossRefGoogle Scholar
  24. van Dam AM, Poole S, Schultzberg M, Zavala F, Tilders FJ (1998) Effects of peripheral administration of LPS on the expression of immunoreactive interleukin-1 alpha, beta, and receptor antagonist in rat brain. Ann N Y Acad Sci 840: 128 – 138PubMedCrossRefGoogle Scholar
  25. Willard LB, HaussWegrzyniak B, Wenk GL (1998) Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats. Neuroscience 88: 193 – 200CrossRefGoogle Scholar
  26. Windisch M, Gschanes A, Hutter-Paier B (1998) Neurotrophic activities and therapeutic experience with a brain derived peptide preparation. J Neural Transm [Suppl 53]: 289 – 298Google Scholar

Copyright information

© Springer-Verlag/Wien 2000

Authors and Affiliations

  • X. Anton Álvarez
    • 1
    • 6
  • V. R. M. Lombardi
    • 2
  • L. Fernández-Novoa
    • 3
  • M. García
    • 2
  • C. Sampedro
    • 1
  • A. Cagiao
    • 2
  • R. Cacabelos
    • 4
  • M. Windisch
    • 5
  1. 1.Departments of NeuropharmacologyEuroEspes Biomedical Research CenterA CoruñaSpain
  2. 2.Departments of Biotechnology and Cell BiologyEuroEspes Biomedical Research CenterA CoruñaSpain
  3. 3.Departments of Molecular BiologyEuroEspes Biomedical Research CenterA CoruñaSpain
  4. 4.Departments of NeurogerontolyEuroEspes Biomedical Research CenterA CoruñaSpain
  5. 5.JSW ResearchGrazAustria
  6. 6.Bergondo A CoruñaSpain

Personalised recommendations