Skip to main content

Neurotrophic effects of Cerebrolysin® in animal models of excitotoxicity

  • Conference paper
Book cover Advances in Dementia Research

Abstract

Excitotoxicity might play an important role in neurodegenerative disorders such as Alzheimer’s disease. In the mouse brain, kainic acid (KA) lesioning results in neurodegeneration patterns similar to those found in human disease. For this study, two sets of experiments were performed in order to determine if Cerebrolysin™ ameliorates the alterations associated with KA administration. In the first set of experiments, mice received intraperitoneal KA injections followed by Cerebrolysin™ administration, while in the second, mice were pretreated with Cerebrolysin™ for 4 weeks and then challenged with KA. Behavioral testing in the water maze and assessment of neuronal structure by laser scanning confocal microscopy showed a significant protection against KA lesions in mice pretreated with Cerebrolysin™. In contrast, mice that received Cerebrolysin™ after KA injections did not show significant improvement. This study supports the contention that Cerebrolysin™ might have a neuroprotective effect in vivo against excitotoxicity.

This work was supported by EBEWE Initiative and was also supported in part by NIH/NIA Grants AG10689, AG05131

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boado RJ (1996) Brain-derived peptides increase the expression of a blood-brain barrier GLUT1 glucose transporter reporter gene. Neurosci Lett 220: 53 – 56

    Article  PubMed  CAS  Google Scholar 

  • Chen KS, Masliah E, Mallory M, Gage FH (1995) Synaptic loss in cognitively impaired rats is ameliorated by chronic NGF infusion. Neuroscience 68: 19 – 27

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369 – 379

    PubMed  CAS  Google Scholar 

  • Drejer J, Benveniste H, Diemer NH, Schousbue A (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45: 145 – 151

    Article  PubMed  CAS  Google Scholar 

  • Francis-Turner L, Valouskova V (1996) Nerve growth factor and nootropic drug Cerebrolysin but not fibroblast growth factor can reduce spatial memory impairment elicited by fimbria-fornix transection: short-term study. Neurosci Lett 202: 1 - 4

    Article  Google Scholar 

  • Gray CW, Patel AJ (1995) Neurodegeneration mediated by glutamate and β-amyloid peptide: a comparison and possible interaction. Brain Res 691: 169 - 179

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Porter RHP (1994) Anatomy and physiology of glutamate in the CNS. Neurology 44: S7 – S13

    PubMed  CAS  Google Scholar 

  • Kofler B, Erhard C, Erhard P, Harrer G (1990) A multidementional approach in testing nootropic drug effects (cerebrolysin). Arch Gerontol Geriatr 10: 129 – 140

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Fagan AM, Terry RD, DeTeresa R, Mallory M, Gage FH (1991) Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP- 43 in the dentate gyrus of the adult rat. Exp Neurol 113: 131 – 142

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Achim CL, Ge N, DeTeresa R, Terry RD, Wiley CA (1992a) Spectrum of human immunodeficiency virus-associated neocortical damage. Ann Neurol 32: 321 – 329

    Article  CAS  Google Scholar 

  • Masliah E, Ellisman M, Carragher B, Mallory M, Young S, Hansen L, DeTeresa R, Terry RD (1992b) Three-dimensional analysis of the relationship between synaptic pathology and neuropil threads in Alzheimer disease. J Neuropathol Exp Neurol 51: 404 – 414

    Article  CAS  Google Scholar 

  • Masliah E, Mallory M, Ge N, Alford M, Veinbergs I, Roses AD (1995) Neurodegeneration in the CNS of apoE-deficient mice. Exp Neurol 136: 107 – 122

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Alford M, Salmon D, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40: 759 – 766

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Westland CE, Abraham CR, Mallory M, Veinbergs I, Rockenstein EM, Mucke L (1997) Amyloid precursor protein protects neurons of transgenic mice against acute and chronic excitotoxic injuries in vivo. Neuroscience 78: 135 – 141

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Amorsolo F, Veinbergs I, Mallory M, Samuel W (1999) Cerebrolysin ameliorates performance deficits and neuronal damage in apolipoprotein E-deficient mice. Pharmacol Biochem Beh 62: 239 – 245

    Article  CAS  Google Scholar 

  • Paier B, Windisch M, Eggenreich U (1992) Postnatal administration of two peptide solutions affects passive avoidance behaviour of young rats. Brain Res 51: 23 – 28

    CAS  Google Scholar 

  • Ruther E, Ritter R, Apecechea M, Freytag S, Windisch M (1994) Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer’s type (SDAT). Pharmacopsychiatry 27: 32 – 40

    Article  PubMed  CAS  Google Scholar 

  • Schwab M, Schaller R, Bauer R, Zwiener U (1997) Morphofunctional effects of moderate forebrain ischemia combined with short-term hypoxia in rats — protective effects of Cerebrolysin. Exp Toxicol Pathol 49: 29 – 37

    PubMed  CAS  Google Scholar 

  • Strain SM, Tasker RAR (1991) Hippocampal damage produced by systemic injections of domoic acid in mice. Neuroscience 44: 343 – 352

    Article  PubMed  CAS  Google Scholar 

  • Whetsell WO Jr (1996) Current concepts of excitotoxicity. J Neuropathol Exp Neurol 55: 1 – 13

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this paper

Cite this paper

Veinbergs, I., Mante, M., Mallory, M., Masliah, E. (2000). Neurotrophic effects of Cerebrolysin® in animal models of excitotoxicity. In: Jellinger, K., Schmidt, R., Windisch, M. (eds) Advances in Dementia Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6781-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6781-6_29

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83512-8

  • Online ISBN: 978-3-7091-6781-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics