Genetically altered transgenic models of Alzheimer’s disease

  • E. Masliah
  • E. Rockenstein
Conference paper


Abnormal processing and aggregation of synaptic proteins might play an important role in the pathogenesis of neurodegenerative disorders. Among them, amyloid precursor protein (APP) has been clearly associated with Alzheimer’s disease (AD) and various transgenic (tg) animal models have been developed where mutant APP is overexpressed under the regulatory control of neuronal promoters. These studies have shown that AD- like pathology (namely plaques and synapse damage) begins to develop at 6- 8 months of age in mice expressing human APP under Thyl, platelet-derived growth factor (B-chain) or protease-resistant prion protein promoters, provided that levels of APP are higher than 5–7 fold of endogenous levels. None of these models have shown the presence of tangles; however, tau- immunoreactive neurites in plaques and astroglial/microglial activation are observed after 12 months of age. Neuronal loss and alterations of synaptic function and connectivity are found in the CA1 region in the PDAPP tg mice lacking the Swiss Webster background. Co-expression of other genes associated with AD modify this phenotype, for example, mutant presenilin 1 accelerates the onset of plaque formation, transforming growth factor β enhances vascular amyloidosis, and apolipoprotein E decreases amyloid deposition. In conclusion, tg mice which are capable of mimicking some aspects of AD (provided that high enough levels of expression are achieved) can potentially be used to test novel drugs for the treatment of neurodegenerative disorders.


Amyloid Precursor Protein Cerebral Amyloid Angiopathy Dystrophic Neurites Mutant Presenilin Synapse Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguzzi A, Brandner S, Marino S, Steinbach JP (1996) Transgenic and knockout mice in the study of neurodegenerative diseases. J Mol Med 74: 111 – 126PubMedCrossRefGoogle Scholar
  2. Andra K, Abramowski D, Duke M, Probst A, Wiederholt KH, Burki K, Goedert M, Sommer B, Staufenbiel M (1996) Expression of APP in transgenic mice: a comparison of neuron-specific promoters. Neurobiol Aging 17: 183 – 190PubMedCrossRefGoogle Scholar
  3. Arai H, Lee V-Y, Messinger ML, Greenberg BD, Lowery DE, Trojanowski JQ (1991) Expression patterns of β-amyloid precursor protein (β-APP) in neural and nonneural tissues from Alzheimer’s disease and control subjects. Ann Neurol 30: 686 – 693PubMedCrossRefGoogle Scholar
  4. Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ, Piccardo P, Ghetti B, Paul SM (1997) Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat Genet 17: 263 – 264Google Scholar
  5. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/l-40 ratio in vitro and in vivo. Neuron 17: 1005 – 1013PubMedCrossRefGoogle Scholar
  6. Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19: 939 – 945PubMedCrossRefGoogle Scholar
  7. Carlson GA, Borchelt DR, Dake A, Turner S, Danielson V, Coffin JD, Eckman C, Meiners J, Nilsen SP, Younkin SG, Hsiao KK (1997) Genetic modifications of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice. Hum Mol Genet 6: 1951 – 1959PubMedCrossRefGoogle Scholar
  8. Clark RF, Goate AM (1993) Molecular genetics of Alzheimer’s disease. Arch Neurol 50: 1164 – 1172PubMedGoogle Scholar
  9. Cole GM, Masliah E, Huynh TV, DeTeresa R, Terry RD, Okudea C, Saitoh T (1989) An antiserum against amyloid β-protein precursor detects a unique peptide in Alzheimer brain. Neurosci Lett 100: 340-346 Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. PNAS USA 88: 7552 – 7556Google Scholar
  10. Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SC (1988) Alzheimer disease. A double immunohistochemical study of senile plaques. Am J Pathol 132: 86 – 101PubMedGoogle Scholar
  11. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemes J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya- Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer- type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373: 523 – 527PubMedCrossRefGoogle Scholar
  12. Games D, Masliah E, Lee M, Johnson-Wood K, Schenk D (1997) Neurodegenerative Alzheimer-like pathology in PDAPP 717V → F transgenic mice. In: Hyman BT, Duyckaerts C, Christen Y (eds) Connections, cognition and Alzheimer’s disease. Springer, Berlin Heidelberg New York Tokyo, pp 105 – 119Google Scholar
  13. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Guiffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704PubMedCrossRefGoogle Scholar
  14. Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301: 44 – 54PubMedCrossRefGoogle Scholar
  15. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders P, Zehr C, O’Campo K, Hardy J, Prada C-M, Eckman C. Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4: 97 – 100Google Scholar
  16. Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM (1999) Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103: R15 – R21Google Scholar
  17. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, A beta elevation, and amyloid plaques in transgenic mice. Science 274: 99 – 102PubMedCrossRefGoogle Scholar
  18. Hyman BT, VanHoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: Cell- specific pathology isolates the hippocampal formation. Science 225: 1168 – 1170PubMedCrossRefGoogle Scholar
  19. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9: 21 – 30CrossRefGoogle Scholar
  20. Martin LJ, Cork LC, Koo EH, Sisodia SS, Weidemann A, Beyreuther K, Masters C, Price DL (1989) Localization of amyloid precursor protein (APP) in brains of young and aged monkeys. Soc Neurosci Abstr 15: 23Google Scholar
  21. Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10: 509 – 519PubMedGoogle Scholar
  22. Masliah E, Mallory M, Hansen L, Alford M, Albright T, Terry R, Shapiro P, Sundsmo M, Saitoh T (1991) Immunoreactivity of CD45, a protein phosphotyrosine phosphatase, in Alzheimer disease. Acta Neuropathol 83: 12 – 20Google Scholar
  23. Masliah E, Mallory M, Ge N, Saitoh T (1992) Amyloid precursor protein is localized in growing neurites of neonatal rat brain. Brain Res 593: 323 – 328PubMedCrossRefGoogle Scholar
  24. Masliah E, Mallory M, Hansen L, Alford M, DeTeresa R, Terry R (1993) An antibody against phosphorylated neurofilaments identifies a subset of damaged association axons in Alzheimer’s disease. Am J Pathol 142: 871 – 882PubMedGoogle Scholar
  25. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16: 5795 – 5811PubMedGoogle Scholar
  26. Masters CL, Multhaup G, Simms G, Pottglesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4: 2757 – 2763PubMedGoogle Scholar
  27. Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, van den Haute C, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274: 6483– 6492Google Scholar
  28. Mucke L, Yu G-Q, Abraham CR, McConlogue L, Rockenstein EM, Masliah E (1999) Potential role of alphal-antichymotrypsin and alpha-synuclein in Alzheimer’s disease pathogenesis assessed in bigenic mice expressin human amyloid precursor proteins. Soc Neurosci Abstr 25: 122. 10Google Scholar
  29. Nalbantoglu J, Tirado-Santiago G, Lahsaini A, Poirier J, Goncalves O, Verge G, Momoli F, Welner SA, Massicotte G, Julien JP (1997) Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 387: 500 – 505PubMedCrossRefGoogle Scholar
  30. Palmer AM, Gershon S (1990) Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 4: 2745 – 2752PubMedGoogle Scholar
  31. Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia: CAT and GAD activities in necropsy tissue. J Neurol Sci 34: 247 – 265PubMedCrossRefGoogle Scholar
  32. Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid β protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270: 28257 – 28267PubMedCrossRefGoogle Scholar
  33. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system- associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9: 339 – 349PubMedCrossRefGoogle Scholar
  34. Selkoe DJ (1989) Amyloid β-protein precursor and the pathogenesis of Alzheimer’s disease. Cell 58: 611 – 612PubMedCrossRefGoogle Scholar
  35. Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that β- amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248: 492 – 494PubMedCrossRefGoogle Scholar
  36. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederholt KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 94: 13287 – 13292PubMedCrossRefGoogle Scholar
  37. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572 – 580PubMedCrossRefGoogle Scholar
  38. Terry RD, Hansen L, Masliah E (1994) Structural alterations in Alzheimer disease. In: Terry RD, Katzman R (eds), Alzheimer disease. Raven Press New York, pp 179 – 196Google Scholar
  39. van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Keoyceau S, Ramdjielal R, Salehi A, Martens G, Grosveld FG, Peter J, Burbach H, Hoi EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiqutin-B in Alzheimer’s and Down patients. Science 279: 242 – 247PubMedCrossRefGoogle Scholar
  40. Wilcock GK, Esiri MM, Bowen DM, Hughes AO (1988) The differential involvement of subcortical nuclei in senile dementia of Alzheimer’s type. J Neurol Neurosurg Psych 51: 842 – 849CrossRefGoogle Scholar
  41. Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Campagno F, Lin C, Samuels I, Mucke L (1997) Amyloidogenic role of transforming growth factor β1 in transgenic mice and Alzheimer’s disease. Nature 389: 603 – 606PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • E. Masliah
    • 1
    • 2
    • 3
  • E. Rockenstein
    • 1
  1. 1.Department of NeurosciencesUniversity of California, San Diego School of MedicineLa JollaUSA
  2. 2.Department of PathologyUniversity of California, San Diego School of MedicineLa JollaUSA
  3. 3.Department of NeurosciencesUniversity of California, San Diego School of MedicineLa JollaUSA

Personalised recommendations