Mechanisms of cell death in neurodegenerative disorders

  • K. A. Jellinger
  • C. Stadelmann
Conference paper


Objective: Progressive cell loss in specific neuronal populations is the prominent pathological hallmark of neurodegenerative diseases, but its molecular basis remains unresolved. Apoptotic cell death has been implicated as a general mechanism in Alzheimer disease (AD) and other neurodegenerative disorders. However, DNA fragmention in neurons is too frequent to account for the continuous loss in these slowly progressive diseases.

Material and methods: In 9 cases of morphologically confirmed AD (CERAD criteria, Braak stages 5 or 6), 5 cases of Parkinson disease (PD) and 3 cases each of Dementia with Lewy bodies (DLB), Progressive Supranuclear Palsy (PSP), and Multiple System Atrophy (MSA), and 7 age-matched controls, the TUNEL method was used to detect DNA fragmentation, and immunohistochemistry for an array of apoptosis-related proteins (ARP), protooncogenes, and activated caspase-3 were performed.

Results: In AD, a considerable number of hippocampal neurons showed DNA fragmentation with a 3 to 5.7 fold increase related to neurofibrillary tangles and amyloid deposits, but only exceptional neurons displayed apoptotic morphology (1 in 1100–5000) and cytoplasmic immunoreactivity for ARPs and activated caspase-3 (1 in 2600 to 5650 hippocampal neurons), whereas no neurons were labeled in age-matched controls. Caspase-3 immunoreactivity was seen in granules of granulovacular degeneration, only rarely colocalized with tau-immunoreactivity. In PD, DLB, and MSA, TUNEL positivity and expression of ARPs or activated caspase-3 was only seen in microglia, rare astrocytes and in oligodendroglia with cytoplasmic inclusions in MSA, but not in nigral or other neurons with or without Lewy bodies. In PSP, only single neurons but oligodendrocytes, some with tau deposits, in brainstem tegmentum and pontine nuclei were TUNEL-positive and expressed both ARPs and activated caspase-3.

Conclusions: These data provide evidence for extremely rare apoptotic neuronal death in AD compatible with the progression of neuronal degeneration in this chronic disease. In other neurodegenerative disorders, apoptosis mainly involves microglia and oligodendroglia, while alternative mechanisms of neuronal death may occur. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards metabolic and other pathogenic factors, with autophagy as a possible protective mechanism in early stages of programmed cell death. The intracellular cascade leading to cell death still awaits elucidation.


Amyotrophic Lateral Sclerosis Alzheimer Disease Parkinson Disease Multiple System Atrophy Dementia With Lewy Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamec E, Vonsattel JP, Nixon RA (1999) DNA strand breaks in Alzheimer’s disease. Brain Res 849: 67 – 77PubMedCrossRefGoogle Scholar
  2. Anderson AJ, Su JH, Cotman CW (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area and effect of post mortem delay. J Neurosci 16: 1710 – 1719PubMedGoogle Scholar
  3. Anglade P, Vyas S, Javoy-Agid F, Herrero M-T, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25 – 31PubMedGoogle Scholar
  4. Arendt T, Holzer M, Fruth R, Brückner MK, Gärtner U (1998) Phosphorylation of tau, Aβ-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol Aging 19: 3 – 13PubMedCrossRefGoogle Scholar
  5. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, Hardy J, Lynch T, Bigio E, Hutton M (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8: 711 – 715PubMedCrossRefGoogle Scholar
  6. Banati RB, Daniel SE, Path MRC, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221 – 227PubMedCrossRefGoogle Scholar
  7. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche O, Seitelberger F, Grundke-Iqbal I, Wisniewski HM (1989) Accumulation of abnormally phosphory- lated t precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477: 90 – 99PubMedCrossRefGoogle Scholar
  8. Bergeron C, Davis A, Lang AE (1998) Corticobasal ganglionic degeneration and progressive supranuclear palsy presenting with cognitive decline. Brain Pathol 8: 355 – 365PubMedCrossRefGoogle Scholar
  9. Boonman Z, Isacson O (1999) Apoptosis in neuronal development and transplantation: role of caspases and trophic factors. Exp Neurol 156: 1 – 18PubMedCrossRefGoogle Scholar
  10. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239 – 259PubMedCrossRefGoogle Scholar
  11. Braak E, Braak H, Mandelkow E-M (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neurophil threads. Acta Neuropathol 87: 554 – 567PubMedCrossRefGoogle Scholar
  12. Bredesen DE (1995) Neural apoptosis. Ann Neurol 38: 839 – 851PubMedCrossRefGoogle Scholar
  13. Burke RE, Kholodilov NG (1998) Programmed cell death: does it play a role in Parkinson’s disease? Ann Neurol 44 [Suppl 1]: S126 – S133PubMedGoogle Scholar
  14. Butterworth NJ, Williams L, Bullock JY, Love DR, Faull RLM, Dragunow M (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington’s-disease striatum. Neuroscience 87: 49 – 53PubMedCrossRefGoogle Scholar
  15. Butterworth NJ, Williams L, Bullock JY, Love DR, Faull RLM, Dragunow M (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington’s-disease striatum. Neuroscience 87: 49 – 53PubMedCrossRefGoogle Scholar
  16. Charles PD, Robertson D, Kerr LD, Lonce S, Austin MT, Gelbman BD, Whetsell WO, Davis TL (1997) Evidence of apoptotic cell death in multiple-system atrophy. Ann Neurol 42: 408 – 409Google Scholar
  17. Clarke PGH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181: 195 – 213PubMedCrossRefGoogle Scholar
  18. Clarke PGH (1999) Apoptosis versus necrosis. In: Koliatsosue M, Ratan RR (eds), Cell death and disease of the nervous system, Humana Press, Totowa NY, pp 3 – 28Google Scholar
  19. Cotman CW (1998) Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiol Aging 19 [Suppl 1]: S29 – S32PubMedCrossRefGoogle Scholar
  20. Cotman CW, Su JH (1996) Mechanisms of neuronal cell death in Alzheimer’s disease. Brain Pathol 6: 493 – 506PubMedCrossRefGoogle Scholar
  21. Cotman CW, Ivins KH, Anderson AJ (1999) Apoptosis in Alzheimer disease. In: Terry RD, Katzman R, Black KJ, Sisodia SS (eds), Alzheimer disease, 2nd edn, Lippincott, Williamns & Wilkins, Philadelphia, pp. 347 – 357Google Scholar
  22. de la Monte SM, Sohn YK, Wands JR (1997) Correlates of p53- and Fas (CD95)- mediated apoptosis in Alzheimer’s disease. J Neurol Sci 152: 73 – 83PubMedCrossRefGoogle Scholar
  23. de la Monte SM, Sohn YK, Ganju N, Wands JR (1998) p53- and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78: 401–411Google Scholar
  24. Dragunow M, Faull R, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6: 1053 – 1057PubMedCrossRefGoogle Scholar
  25. Duan W, Zhang Z, Gash DM, Mattson MP (1999) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann Neurol 46: 587 – 597PubMedCrossRefGoogle Scholar
  26. Galvin JE, Lippa CF (1999) Apoptosis in familial Alzheimer’s disease (abstr.). Ann Neurol 46: 452Google Scholar
  27. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid- beta precursor protein and amyloidogenic A beta peptide formation. Cell 97: 395 – 406PubMedCrossRefGoogle Scholar
  28. Giannakopoulos P, Kövari E, Savioz A, De Bilabao F, Dubois-Dauphin M, Hof PR, Bouras C (1999) Differential distribution of presenilin-1, Bax, and Bcl-X in Alzheimer’s disease and frontotemporal dementia. Acta Neuropathol 98: 141 – 149PubMedCrossRefGoogle Scholar
  29. Gleckman AM, Jiang Z, Liu Y, Smith TW (1999) DNA fragmentation in neurons and glial cells indicates cellular injury but not apoptosis in Pick’s disease. Acta Neuropathol 98: 55 – 61PubMedCrossRefGoogle Scholar
  30. Gold R, Schmied M, Giegerich G, Breitschopf H, Hartung HP, Toyka K, Lassmann H (1994) Differentiation between cellular apoptosis and necrosis by combined use of in situ tailing and nick translation techniques. Lab Invest 71: 219 – 225PubMedGoogle Scholar
  31. Graeber MB, Grasbon-Frodl E, Abell-Aleff P, Kösel S (1999) Nigral neurons are likely to die of a mechanism other than classical apoptosis in Parkinson’s disease. Parkinsonism Relat Disord 5: 187 – 192PubMedCrossRefGoogle Scholar
  32. Grohshal N, Smiley JF, DeMaggio AJ, Hoekstra MF et al (1999) A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am J Pathol 155: 1163 – 1172CrossRefGoogle Scholar
  33. Gschwind M, Huber G (1995) Apoptotic cell death induced by (3-amyloid 1–42 peptide is cell type dependent. J Neurochem 65: 292 – 300PubMedCrossRefGoogle Scholar
  34. Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid β-peptide: involvement of calcium and oxyradicals. J Neurosci 17: 4212 – 4222PubMedGoogle Scholar
  35. Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW, Bondada V, Rangnekar VM, Mattson MP (1998) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nature Med 4: 957 – 962PubMedCrossRefGoogle Scholar
  36. Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999a) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin- 1 mutant knock-in mice. Nature Med 5: 101 – 106CrossRefGoogle Scholar
  37. Guo Q, Sebastian L, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999b) Increased vunerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid β-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem 72: 1019 – 1029CrossRefGoogle Scholar
  38. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S et al (2000) Caspase-3. A vulnerability factor and final effector in apopotitc death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97: 2875 – 2880PubMedCrossRefGoogle Scholar
  39. Hauw J-J, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, McKee A, Tabaton M, Litvan I (1994) Preliminary NINDS neuropathologic criteria for Steele- Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 44: 2015 – 2019PubMedGoogle Scholar
  40. Hockenbery D (1995) Defining apoptosis. Am J Pathol 146: 16 – 19PubMedGoogle Scholar
  41. Ivins KJ, Thornton PL, Rohn TT, Cotman CW (1999) Neuronal apoptosis induced by β- amyloid is mediated by caspase-8. Neurobiol Dis 6: 440 – 449PubMedCrossRefGoogle Scholar
  42. Jellinger KA (1999a) Mechanisms of cell death in Parkinson’s disease and related disorders. Neurosci News 2: 27 – 35Google Scholar
  43. Jellinger KA (1999b) Is there apoptosis in Lewy body disease? Acta Neuropathol 97: 413 – 415CrossRefGoogle Scholar
  44. Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107: 1 – 29PubMedCrossRefGoogle Scholar
  45. Jeon BS, Kholodilov NG, Oo TF, Kim SY, Tomaselli KJ, Srinivasan A, Stefanis L, Burke RE (1999) Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra. J Neurochem 73: 322 – 333PubMedCrossRefGoogle Scholar
  46. Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C (1999) Inhibition of NF- KBpotentiates amyloid β-mediated neuronal apoptosis. Proc Natl Acad Sci USA 96: 9409 – 9414PubMedCrossRefGoogle Scholar
  47. Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MP (1998) Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 18: 4439 – 4450PubMedGoogle Scholar
  48. Kihira T, Yoshida S, Hironishi M, Wakayama I, Yase Y (1998) Neuronal degeneration in amyotrophic lateral sclerosis is TI mediated by a possible mechanism different from classical apoptosis. Neuropathology 18: 301 – 308CrossRefGoogle Scholar
  49. Kingsbury AE, Fester OJF, Nisbet AP, et al (1995) Tissue pH as an indicator of mRNA preservation in post-mortem brain. Mol Brain Res 28: 311-318 Kingsbury AE, Marsden CD, Foster OJF (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13: 877 – 884Google Scholar
  50. Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y, Smith MA, Perry G, Whitehouse PJ, Taniguchi T (1998) Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res 780: 260 – 269Google Scholar
  51. Kösel S, Egensperger R, v. Eitzen U, Mehraein P, Graeber M (1997) On the question of apootosis in the Parkinsonian substantia nigra. Acta Neuropathol 93: 105 – 108PubMedCrossRefGoogle Scholar
  52. Kwok JBJ, Li Q-X, Hallupp M, Whyte S et al (2000) Novel Leu723Pro amyloid precursor protein mutation increases amyloid (342(43) peptide levels and induces apoptosis. Ann Neurol 47: 249 – 253PubMedCrossRefGoogle Scholar
  53. Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1- methyl-4-phenyl-l,2,3,6-tetrahydropyridine exposure. Ann Neurol 46: 598 – 605PubMedCrossRefGoogle Scholar
  54. Lantos PL (1999) The definition of multiple system atrophy: A review of recent developments. J Neuropathol Exp Neurol 57: 1099 – 1111CrossRefGoogle Scholar
  55. Lassman H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89: 35 – 41CrossRefGoogle Scholar
  56. Li YP, Bushnell AF, Lee CM, Perlmutter LS, Wong SK (1996) β-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res 738:196–204Google Scholar
  57. Lu DC, Rabizadeh S, Chandra S, Shayya RF, Ellerby LM, Ye X, Salvesen GS, Koo EH, Bredesen DF (2000) A second cytotoxic proteolytic peptide derived from amyloid β- protein precursor. Nat Med 6: 397 – 404PubMedCrossRefGoogle Scholar
  58. Lucassen PJ, Chung WCJ, Kamphorst W, Swaab DF (1997) DNA damage distribution in the human brain as shown by in situ end labelling. Area-specific differences in aging and Alzheimer’s disease in the absence of apoptotic morphology. J Neuropathol Exp Neurol 887 – 900Google Scholar
  59. MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RLM, Synek B, Mee E, Connor B, Dragunow M (1997) Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Exp Neurol 147: 316 – 332PubMedCrossRefGoogle Scholar
  60. Marcus DL, Thomas CG, Levin R, Golomb J, Recht P, Freedman ML (1996) Evidence for apoptosis in Alzheimer’s disease. J Invest Med 44: 308A Marcus DL, Strafaci JA, Miller DC, Masia S, Thomas CG, Rosman J, Hussain S, Freedman ML (1998) Quantitative neuronal c-Fos and c-Jun expression in Alzheimer’s disease. Neurobiol Aging 19: 393 – 400Google Scholar
  61. Marshall KA, Daniel SE, Cairns N, Jenner P, Halliwell B (1997) Upregulation of the anti- apoptotic protein Bcl-2 may be early event in neurodegeneration: studies on Parkinson’s incidental Lewy body disease. Biochem Biophys Res Commun 240: 84 – 87PubMedCrossRefGoogle Scholar
  62. Martin LJ (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 58: 459 – 471PubMedCrossRefGoogle Scholar
  63. Masliah E, Mallory M, Alford M, Tanaka S, Hansen LA (1998) Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J Neuropathol Exp Neurol 57: 1041 – 1052PubMedCrossRefGoogle Scholar
  64. Mattson MP, Partin J, Begley JG (1998) Amyloid β-peptide induces apoptosis-related events in synapses and dendrites. Brain Res 807: 167 – 176PubMedCrossRefGoogle Scholar
  65. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Loverstone S, Collerton D, Jansen ENH, de Vos RAI, Wilcock GK, Jellinger KA, Perry RH (1996) Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB International Workshop. Neurology 47: 1113 – 1124PubMedGoogle Scholar
  66. McShea A, Harris PLR, Webster KR, Wahl AF, Smith MA (1997) Abnormal expression of the cell cycle regulators P 16 and CDK4 in Alzheimer’s disease. Am J Pathol 50: 1933 – 1939Google Scholar
  67. Michel PP, Lambeng N, Ruberg M (1999) Neuropharmacologic aspects of apoptosis: Significance for neurodegenerative diseases. Clin Neuropharmacol 22: 137 – 150PubMedGoogle Scholar
  68. Micheli A, Atzori C, Pival R, Tortarolo M, Girelli M, Schiffer D, Bendotti C (1999) Lack of apoptosis in mice with ALS. Nat Med 5: 966 – 967CrossRefGoogle Scholar
  69. Milligan CE (2000) Caspase cleavage of APP results in a cytotoxic proteolytic peptide. Nat Med 6: 385 – 386PubMedCrossRefGoogle Scholar
  70. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 41: 479 – 486PubMedGoogle Scholar
  71. Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm [Suppl 50]: 125 – 140Google Scholar
  72. Mogi M, Togari A, Kondo T, Mizono Y et al (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brains. J Neural Transm 107: 335 – 341PubMedCrossRefGoogle Scholar
  73. Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Appl Neurol 58: 188 – 197CrossRefGoogle Scholar
  74. Morrison BM, Hof PR, Morrison JH (1998) Determinants of neuronal vulnerability in neurodegenerative diseases. Ann Neurol 44 [Suppl 1]: S32 – S44PubMedGoogle Scholar
  75. Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus of Alzheimer’s disease. Neurobiol Aging 18: 655 – 671CrossRefGoogle Scholar
  76. Nagy Z, Esiri MM, Smith AD (1997) Expression of cell division markers in the hippocampus of Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol 93: 294 – 300PubMedCrossRefGoogle Scholar
  77. Nishimura T, Akiyama H, Yonehara S, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (1995) Fas antigen expression in brains of patients with Alzheimer-type dementia. Brain Res 695: 137 – 145PubMedCrossRefGoogle Scholar
  78. Ohyagi Y, Yamada T, Asahara H, Taniwaki T, Nakabeppu Y, Younkin S, Kira J (1999) Amyloid-β protein 42 forms a 24-kd complex in normal cells and is deposited in apoptotic neurons (abstr). Ann Neurol 46: 453 Ohyagi Y, Yamada T, Nishioka K, Clarke NJ et al (2000) Selective increase in cellular Aβ42 is related to apoptosis but not necrosis. Neuroreport 11: 167 – 171CrossRefGoogle Scholar
  79. Olanow CW, Jenner P, Tatton N, Tatton WG (1998) Neurodegeneration in Parkinson’s disease. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders, 3rd edn. Williams & Wilkins, Baltimore, pp 67 – 103Google Scholar
  80. Olanow CW, Jenner P, Tatton N, Tatton WG (1998) Neurodegeneration in Parkinson’s disease. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders, 3rd edn. Williams & Wilkins, Baltimore, pp 67 – 103Google Scholar
  81. Patel T, Gores GJ, Kaufmann SH (1996) The role of proteases during apoptosis. FASEB J 10: 587 - 597PubMedGoogle Scholar
  82. Perry G, Numomura A, Smith MA (1998a) A suicide note from Alzheimer disease neurons? Nat Med 4: 897 – 898CrossRefGoogle Scholar
  83. Perry G, Numomura A, Lucassen PJ, Lassmann H, Smith MA (1998b) Apoptosis and Alzheimer’s disease. Science 282: 1265 Pettman B, Henderson CE (1998) Neuronal cell death. Neuron 20: 633 – 647Google Scholar
  84. Probst-Cousin S, Rickert CH, Schmid KW, Gullotta F (1998) Cell mechanisms in multiple system atrophy. J Neuropathol Exp Neurol 57: 814 – 821PubMedCrossRefGoogle Scholar
  85. Robertson GS, Crocker SJ, Nicholson DW, Schulz JB (2000) Neuroprotection by the inhibition of apoptosis. Brain Pathol 10: 283 – 292PubMedCrossRefGoogle Scholar
  86. Selznick LA, Holtzman DM, Han BH, Gokder M, Srinivasan AN, Johnson MJ, Roth KA (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J Neuropathol Exp Neurol 58: 1020 – 1026PubMedCrossRefGoogle Scholar
  87. Selznick LA, Zheng TS, Flavell RA, Rakic P, Roth KA (2000) Amyloid beta-induced neuronal death is Bax-dependent but Caspase-independent. J Neuropathol Exp Neurol 59: 271 – 279PubMedGoogle Scholar
  88. Sheng JG, Mrak RE, Griffin WST (1998) Progressive neuronal DNA damage associated with neurofibrillary tangle formation in Alzheimer’s disease. J Neuropathol Exp Neurol 57: 323 – 328PubMedCrossRefGoogle Scholar
  89. Smale JG, Nichols NR, Brady DR, Finch CE, HortonWE Jr (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133: 225 – 230PubMedCrossRefGoogle Scholar
  90. Srinivasan A, Roth KA, Sayers RO, Shindler KS, Wong AM, Fritz LC, Tomaselli K (1998) In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ 5: 1004 – 1016PubMedCrossRefGoogle Scholar
  91. Stadelmann C, Brück W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability but not apoptosis. J Neuropathol Exp Neurol 57: 456 – 464PubMedCrossRefGoogle Scholar
  92. Stadelmann C, Deckwerth TL, Scrinivasan A, Bancher C, Brück W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single apopototic neurons and granules of granulovacuolar degeneration in Alzheimer disease and Down’s syndrome: a role for autophagy as antiapoptotic counterregulatory mechanism ? Am J Pathol (submitted) Su JH, Satou T, Anderson AJ, Cotman CW (1996) Up-regulation of Bcl-2 is associated with neuronal DNA damage in Alzheimer’s disease. Neuroreport 7: 437 – 440Google Scholar
  93. Su JH, Deng GM, Cotman CW (1997) Bax protein expression is increased in Alzheimer’s brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropathol Exp Neurol 56: 86 – 93PubMedCrossRefGoogle Scholar
  94. Tan Z, Sun N, Schreiber SS (1998) Immunohistochemical localization of redox factor-1 (Ref-1) in Alzheimer’s hippocampus. NeuroReport 9: 2749 – 2752Google Scholar
  95. Tatton WG, Chalmers-Redman RME, Rideout HJ, Tatton NA (1999) Mitochondrial permeability in neuronal death: possible relevance to the pathogenesis of Parkinson’s disease. Parkinsonism Relat Disord 5: 221 – 229PubMedCrossRefGoogle Scholar
  96. Thomas LB, Gates DJ, Richfield EK, O’Brien TF, Schweitzer JB, Steindler DA (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 133: 265 – 272PubMedCrossRefGoogle Scholar
  97. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312 – 1316PubMedCrossRefGoogle Scholar
  98. Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24 – 29PubMedCrossRefGoogle Scholar
  99. Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119 – 131PubMedGoogle Scholar
  100. Torp R, Su JH, Deng G, Cotman CW (1998) GADD45 is induced in Alzheimer’s disease, and protects against apoptosis in vitro. Neurobiol Dis 5: 245 – 252PubMedCrossRefGoogle Scholar
  101. Tortosa A, Blanco R, Ferrer I (1998a) Bcl-2 and Bax protein expression in neurofibrillary tangles in progressive supranuclear palsy. NeuroReport 9: 1049 – 1052Google Scholar
  102. Tortosa A, Lopez W, Ferrer I (1998b) Bcl-2 and Bax protein expression in Alzheimer’s disease. Acta Neuropathol 95: 407 – 412CrossRefGoogle Scholar
  103. Trojanowski JQ, Goedert M, Iwatsubo T, Lee VMY (1998) Fatal attractions — abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body- dementia. Cell Death Differ 5: 832 – 837PubMedCrossRefGoogle Scholar
  104. Troncoso JC, Sukhov RR, Kawas CH, Koliatsos VE (1996) In situ labeling of dying cortical neurons in normal aging and in Alzheimer’s disease. Correlations with senile plaques and disease progression. J Neuropathol Exp Neurol 55: 1134 – 1142PubMedCrossRefGoogle Scholar
  105. Troost D, Aten J, Morsink F, de Jong JMBV (1995) Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons: Bcl-2 expression is increased in unaffected post-central gyrus. Neuropathol Appl Neurobiol 21: 498 – 504PubMedCrossRefGoogle Scholar
  106. Tu P-H, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VM-Y (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble a-synuclein. Ann Neurol 44: 415 – 422PubMedCrossRefGoogle Scholar
  107. Vito P, Ghayur T, D’Adamio L (1997) Generation of antiapoptotic presenilin-2 polypeptides by alternative transcription, proteolysis, and caspase-3 cleavage. J Biol Chem 272: 28315 – 28320PubMedCrossRefGoogle Scholar
  108. Vyas S, Javoy-Agid F, Herrero MT, Strada O, Boissiere F, Hibner U, Agid Y (1997) Expression of Bel 2 in adult human brain regions with special reference to neurodegenerative disorders. J Neurochem 69: 223 – 231PubMedCrossRefGoogle Scholar
  109. Wang KKW (2000) Calpain and caspase; can you tell the difference? Trends Neurol Sci 23: 20 – 26CrossRefGoogle Scholar
  110. Wilson CA, Roms RW, Lee M-Y (1999) Intracellular APP processing and Aβ production in Alzheimer disease. J Neuropathol Exp Neurol 58: 787 – 794PubMedCrossRefGoogle Scholar
  111. Wolozin B, Iwasaki K, Vito P, et al (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274: 1710PubMedCrossRefGoogle Scholar
  112. Wüllner U, Kornhuber J, Weller M, Schulz JB, Loschmann PA, Riederer P (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease — a cautionary note. Acta Neuropathol 97: 408 – 412PubMedCrossRefGoogle Scholar
  113. Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251 – 305PubMedCrossRefGoogle Scholar
  114. Yamatsuji T, Matsui T, Okamoto T, Komatsuzaki K, Takeda S, Fukumoto H, Iwatsubo T, Suzuki N, Asami-Odaka A, Ireland S, Kinane B, Giambarella U, Nishimoto I (1996) G-protein-mediated neuronal DNA fragmentation induced by familial Alzheimer’s disease-associated mutants of APP. Science 272: 1349 – 1352PubMedCrossRefGoogle Scholar
  115. Yo YH, Fortini ME (1999) Apopototic activities of wild-type and Alzheimer’s disease related mutant presenilins in Drosopihla melanogaster. J Cell Biol 146: 1351 – 1364CrossRefGoogle Scholar
  116. Zhang ZH, Hartmann H, Do VM (1998) Destabilization of β-catenin by mutations in presenilin-I potentiates neuronal apoptosis. Nature 395: 698 – 702PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • K. A. Jellinger
    • 3
  • C. Stadelmann
    • 1
    • 2
  1. 1.Department of Neuroimmunology, Brain Research InstituteUniversity of Vienna School of MedicineViennaAustria
  2. 2.Institute of NeuropathologyCharité, Campus Virchow KlinikumBerlinGermany
  3. 3.Ludwig Boltzmann Institute of ClinicalPsychiatric Hospital/B-BuildingViennaAustria

Personalised recommendations