Cytokines in CNS disorders: neurotoxicity versus neuroprotection

  • Guido Stoll
  • S. Jander
  • M. Schroeter
Conference paper


Cytokines orchestrate T cell-mediated immune responses. In experimental autoimmune encephalomyelitis (EAE) the proinflammatory cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-12 and IL-18 are critically involved in the initiation and amplification of the local immune response in the CNS which is counterbalanced by upregulation of antiinflammatory cytokines such as IL-10. The predicted function of individual cytokines during EAE has recently been challenged by transgenic animal studies and neutralization experiments.

Cytokine induction is not restricted to autoimmunity in the nervous system. Cytokines are involved in nerve regeneration and induced in focal cerebral ischemia both at the site of infarction and in remote nonischemic brain regions. In cerebral ischemia TNF-α and IL-1β probably have dual functions: In concert with upregulation of inducible NO synthase (iNOS) they exert neurotoxicity while in the absence of iNOS, TNF-α and IL-1β may contribute to neuroprotection and plasticity.

The interplay between glial cells, infiltrating leukocytes and induced cytokines leading to CNS pathology is complex and incompletely understood. Further assesment of the functional contribution of cytokines critically depends on the elucidation of downstream secondary signaling mechanisms.


Experimental Autoimmune Encephalomyelitis Interferon Regulatory Factor Focal Cerebral Ischemia Ischemic Brain Injury Wallerian Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arai K, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T (1990) Cytokines: coordinators of immune and inflammatory responses. Ann Rev Biochem 59: 783 – 836PubMedCrossRefGoogle Scholar
  2. Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996) The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 20: 445 – 452PubMedCrossRefGoogle Scholar
  3. Barger SW, Harmon AD (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388: 878 – 881CrossRefGoogle Scholar
  4. Barone FC, Arvin B, White RF, Willette RN, Feuerstein GZ (1997) Tumor necrosis factor-a: a mediator of focal ischemic brain injury. Stroke 28: 1233 – 1244PubMedCrossRefGoogle Scholar
  5. Betz AL, Yang GY, Davidson BL (1995) Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab 15: 547 – 551PubMedCrossRefGoogle Scholar
  6. Bidmon HJ, Wu J, Buchkremer-Ratzmann I, Mayer B, Witte OW, Zilles K (1998) Transient changes in the presence of nitric oxide synthases and nitrotyrosine immu- noreactivity after focal cortical lesions. Neuroscience 82: 377 – 395PubMedCrossRefGoogle Scholar
  7. Botchina GI, Meistrell ME, Botchina IL, Tracey KJ (1997) Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 3: 765 – 781Google Scholar
  8. Bruce AJ, Boling W, Kindy MS, Peschon J, Kramer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2: 788 – 794PubMedCrossRefGoogle Scholar
  9. Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12: 139 – 153PubMedCrossRefGoogle Scholar
  10. Davis CA, Loddick SA, Toulmond S, Stroemer RP, Hunt J, Rothwell NJ (1999) The progression and topographic distribution of interleukin-lβ expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 19: 87 – 98CrossRefGoogle Scholar
  11. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG (1996) Mice with a disrupted IFN-y gene are susceptible to the induction of experimental autoimmune encephaomyelitis (EAE). J Immunol 156: 5 – 7PubMedGoogle Scholar
  12. Gillen C, Jander S, Stoll G (1998) Sequential expression of mRNA for proinflammatory cytokines and interleukin-10 in the rat peripheral nervous system: comparison between immune-mediated demyelination and Wallerian degeneration. J Neurosci Res 51: 489 – 496PubMedCrossRefGoogle Scholar
  13. Guenard V, Dinarello CA, Weston PJ, Aebischer P (1991) Peripheral nerve regeneration is impeded by interleukin-1 receptor antagonist released from a polymeric guidance channel. J Neurosci Res 29: 396 – 400PubMedCrossRefGoogle Scholar
  14. Hagemann G, Redecker C, Neumann-Haefelin T, Freund HJ, Witte OW (1998) Increased long term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol 44: 255 – 258PubMedCrossRefGoogle Scholar
  15. Hartung HP, Jung S, Stoll G, Zielasek J, Schmidt B, Archelos JJ, Toyka KV (1992) Inflammatory mediators in demyelinating disorders of the CNS and PNS. J Neuroimmunol 40: 197 – 210PubMedCrossRefGoogle Scholar
  16. Heese K, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70: 699 – 707PubMedCrossRefGoogle Scholar
  17. Hewett SJ, Csernansky CA, Choi DW (1994) Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 13: 487 – 494PubMedCrossRefGoogle Scholar
  18. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17: 9157 – 9164PubMedGoogle Scholar
  19. Iadecola C, Salkowski CA, Zhang F, Aber T, Nagayama M, Vogel SN, Ross ME (1999) The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. J Exp Med 189: 719 – 727PubMedCrossRefGoogle Scholar
  20. Jander S, Stoll G (1998) Differential induction of interleukin-12, interleukin-18, and interleukin-lbeta converting enzyme mRNA in experimental autoimmune encephalomyelitis of the Lewis rat. J Neuroimmunol 91: 93 – 99PubMedCrossRefGoogle Scholar
  21. Jander S, Pohl J, Gillen C, Stoll G (1996) Differential expression of interleukin-lOmRNA in Wallerian degeneration and immune-mediated demyelination of the rat peripheral nervous system. J Neurosci Res 43: 254 – 259PubMedCrossRefGoogle Scholar
  22. Jander S, Pohl J, D’Urso D, Gillen C, Stoll G (1998) Time course and cellular localisation of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system. Am J Pathol 152: 975 – 982PubMedGoogle Scholar
  23. Kennedy MK, Torrance DS, Picha KS, Mohl KM (1992) Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10-mRNA expression correlates with recovery. J Immunol 149: 2496 – 2505PubMedGoogle Scholar
  24. Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15: 721 – 727PubMedCrossRefGoogle Scholar
  25. Liu T, Clark RK, McDonell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994) Tumor necrosis factor-α expression in ischemic neurons. Stroke 25: 1481 – 1488PubMedCrossRefGoogle Scholar
  26. Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374: 647 – 650PubMedCrossRefGoogle Scholar
  27. Merril JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19: 331 – 338CrossRefGoogle Scholar
  28. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-α pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metabol 17: 483 – 490Google Scholar
  29. Reichert F, Levitzky R, Rotshenker S (1996) Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8: 530 – 535PubMedCrossRefGoogle Scholar
  30. Relton JK, Rothwell NJ (1992) Interleukin-1 receptor antagonist inhibits ischemic and excitotoxic neuronal damage in the rat. Brain Res Bull 29: 243 – 246PubMedCrossRefGoogle Scholar
  31. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO (1998) A neuromodulatory role of interleukin-lbeta in the hippocampus. Proc Natl Acad Sci USA 95: 7778 – 7783PubMedCrossRefGoogle Scholar
  32. Schroeter M, Schiene K, Kraemer M, Hagemann G, Weigel H, Eysel UT, Witte OW, Stoll G (1995) Astroglial responses in photochemically induced focal ischemia of the rat cortex. Exp Brain Res 106: 1 – 6PubMedCrossRefGoogle Scholar
  33. Schroeter M, Jander S, Witte OW, Stoll G (1999) Heterogeneity of the microglial response in photochemically induced focal ischemia of the rat cortex. Neuroscience 89: 1367 – 1377PubMedCrossRefGoogle Scholar
  34. Segal BM, Dwyer BK, Shevach EM (1998) An interleukin (IL)-10/IL-12 immunore- gulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187: 537 – 546PubMedCrossRefGoogle Scholar
  35. Selmaj K, Raine CS, Cross AH (1991) Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol 30: 694 – 700PubMedCrossRefGoogle Scholar
  36. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58: 233 – 247PubMedCrossRefGoogle Scholar
  37. Stoll G, Miiller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9: 313 – 325PubMedCrossRefGoogle Scholar
  38. Stoll G, Jung S, Van der Meide P, Hartung HP (1993a) Tumor necrosis factor-a in immune-mediated demyelination and Wallerian degeneration of the peripheral nervous system. J Neuroimmunol 45: 175 – 182CrossRefGoogle Scholar
  39. Stoll G, Miiller S, Schmidt B, Van der Meide P, Jung S, Toyka KV, Hartung HP (1993b) Localisation of interferon-γ and la-antigen in T cell line-mediated experimental autoimmune encephalomyelitis. Am J Pathol 142: 1866 – 1875Google Scholar
  40. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56: 149 – 171PubMedCrossRefGoogle Scholar
  41. Storch M, Stefferl A, Brehm U, Weissert R, Wallström E, Kerschensteiner M, Olsson T, Linington C, Lassmann H (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8: 681 – 694PubMedCrossRefGoogle Scholar
  42. Strijbos PJ, Rothwell NJ (1995) Interleukin-1 beta attenuates excitatory amino acid- induced neurodegeneration in vitro: involvement of nerve growth factor. J Neurosci 15: 3468 – 3474PubMedGoogle Scholar
  43. Wang X, Barone FC, Aiyar NV, Feuerstein GZ (1997) Interleukin-1 receptor and receptor antagonist gene expression after focal stroke in rats. Stroke 28: 155 – 162PubMedCrossRefGoogle Scholar
  44. Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE (1997) Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunocytochemistry. J Neuroimmunol 74: 1 – 8PubMedCrossRefGoogle Scholar
  45. Wildbaum G, Youssef S, Grabie N, Karin N (1998) Neutralizing antibodies to IFN-γ- inducing factor prevent experimental autoimmune encephalomyelitis. J Immunol 161: 6368 – 6374PubMedGoogle Scholar
  46. Zeev-Brann AB, Lazarov-Spiegler O, Brenner T, Schwartz M (1998) Differential effects of central and peripheral nerves on macrophages and microglia. Glia 23: 181 – 190PubMedCrossRefGoogle Scholar
  47. Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R (1999) Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J Neurosci 19: 4305 – 4313PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Guido Stoll
    • 2
  • S. Jander
    • 1
  • M. Schroeter
    • 1
  1. 1.Department of NeurologyHeinrich-Heine-University DüsseldorfGermany
  2. 2.Department of NeurologyHeinrich-Heine-UniversityDüsseldorfGermany

Personalised recommendations