The amount of CO2 in the air breathed by the Iceman

  • Hilary H. Birks
Part of the The Man in the Ice book series (3262, volume 4)


The amount of CO2 in the atmosphere is steadily rising at the present day due to human activities. In pre-industrial times, before 1800, the concentration was ca. 280 ppmv (parts per million by volume, or mixing ratio). Since then it has risen at an increasing rate, as shown by ice-core measurements (Friedli et al., 1986) and by direct atmospheric measurements since 1958 (Keeling et al., 1995; Mauna Loa Data, 1997). Air bubbles trapped in polar ice preserve a very long-term record of CO2 concentrations, and direct measurements on this air have shown that CO2 concentrations were some 100 ppmv lower in glacial periods, at ca. 180 ppmv (Barnola et al., 1987; Raynaud et al., 1993). The concentration of CO2 rose at the end of the last glaciation and was ca. 270 ppmv in the CO2 record from the Taylor Dome ice core at 5–6000 yr BP (Indermühle et al., 1999).


Stomatal Density Inverse Regression Fossil Leave Taylor Dome Salix Herbacea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnola J. M., Raynaud D., Korotkevich U. S. and Lorius D. (1987) Vostok ice core provides a 160,000 year record of atmospheric CO2. Nature 329: 408–414.CrossRefGoogle Scholar
  2. Baroni C. and Orombelli G. (1996) The alpine “Iceman” and Holocene climatic change. Quaternary Research 46: 78–83.CrossRefGoogle Scholar
  3. Beerling D. J., Birks H. H. and Woodward F. I. (1995) Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves. Journal of Quaternary Science 10: 379–384.CrossRefGoogle Scholar
  4. Braun-Blanquet J. und Rubel E. (1932–1935) Flora von Graubünden. Veröff. Geobot. Inst. Rubel 7:1695 pp.Google Scholar
  5. Dickson J. H., Bortenschlager S., Oeggl K., Porley R. and McMullen A. (1996) Mosses and the Tyrolean Iceman’s southern provenance. Proceedings of the Royal Society of London B 263: 567–571.CrossRefGoogle Scholar
  6. Friedli H., Lötscher H., Oeschger H., Siegenthaler U. and Stauffer B. (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324: 237–238.CrossRefGoogle Scholar
  7. Grabherr G., Gottfried M., Gruber A. and Pauli H. (1995) Patterns and current changes in alpine plant diversity. Ecological Studies 113: 167–181 (F. S. ChapinandC. Körner, eds.).Google Scholar
  8. Hattam C. (1997) How does stomatal density of Salixherbacea L. vary with atmospheric CO2 concentration? Thesis, University of Wales, Bangor.Google Scholar
  9. Indermühle A., Stocker T. F., Joos F., Fischer H., Smith H. J., Wahlen M., Deck B., Mastrioanni D.,Tschumi J., Blunier T, Meyer R. and Stauffer B. (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398: 121–126.Google Scholar
  10. Jones H. G. (1992) Plants and Microclimate. A quantitative approach to environmental physiology, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  11. Keeling C. D., Whorf T. P., Wahlen M. and van der Plicht J. (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375: 666–670.CrossRefGoogle Scholar
  12. Mauna Loa Data (1997) Internet, trends_html/trends/tables/sio-maun.htm.Google Scholar
  13. Raynaud D., Jouzel J., Barnola J. M., Chappellaz J., Delmas R. J. and Lorius C. (1993) The ice record of greenhouse gases. Science 259: 926–934.Google Scholar
  14. Rundgren M. and Beerling D. (1999) A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. The Holocene 9: 509–513.CrossRefGoogle Scholar
  15. Salisbury E. J. (1927) On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society of London B 216: 1–66.CrossRefGoogle Scholar
  16. Woodward F. I. (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327: 617–618.CrossRefGoogle Scholar
  17. Woodward F. I. and Kelly C. K. (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131: 311–327.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2000

Authors and Affiliations

  • Hilary H. Birks
    • 1
  1. 1.Botanical InstituteUniversity of BergenNorway

Personalised recommendations