Skip to main content

The amount of CO2 in the air breathed by the Iceman

  • Chapter

Part of the book series: The Man in the Ice ((3262,volume 4))

Abstract

The amount of CO2 in the atmosphere is steadily rising at the present day due to human activities. In pre-industrial times, before 1800, the concentration was ca. 280 ppmv (parts per million by volume, or mixing ratio). Since then it has risen at an increasing rate, as shown by ice-core measurements (Friedli et al., 1986) and by direct atmospheric measurements since 1958 (Keeling et al., 1995; Mauna Loa Data, 1997). Air bubbles trapped in polar ice preserve a very long-term record of CO2 concentrations, and direct measurements on this air have shown that CO2 concentrations were some 100 ppmv lower in glacial periods, at ca. 180 ppmv (Barnola et al., 1987; Raynaud et al., 1993). The concentration of CO2 rose at the end of the last glaciation and was ca. 270 ppmv in the CO2 record from the Taylor Dome ice core at 5–6000 yr BP (Indermühle et al., 1999).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnola J. M., Raynaud D., Korotkevich U. S. and Lorius D. (1987) Vostok ice core provides a 160,000 year record of atmospheric CO2. Nature 329: 408–414.

    Article  Google Scholar 

  • Baroni C. and Orombelli G. (1996) The alpine “Iceman” and Holocene climatic change. Quaternary Research 46: 78–83.

    Article  Google Scholar 

  • Beerling D. J., Birks H. H. and Woodward F. I. (1995) Rapid late-glacial atmospheric CO2 changes reconstructed from the stomatal density record of fossil leaves. Journal of Quaternary Science 10: 379–384.

    Article  Google Scholar 

  • Braun-Blanquet J. und Rubel E. (1932–1935) Flora von Graubünden. Veröff. Geobot. Inst. Rubel 7:1695 pp.

    Google Scholar 

  • Dickson J. H., Bortenschlager S., Oeggl K., Porley R. and McMullen A. (1996) Mosses and the Tyrolean Iceman’s southern provenance. Proceedings of the Royal Society of London B 263: 567–571.

    Article  Google Scholar 

  • Friedli H., Lötscher H., Oeschger H., Siegenthaler U. and Stauffer B. (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324: 237–238.

    Article  Google Scholar 

  • Grabherr G., Gottfried M., Gruber A. and Pauli H. (1995) Patterns and current changes in alpine plant diversity. Ecological Studies 113: 167–181 (F. S. ChapinandC. Körner, eds.).

    Google Scholar 

  • Hattam C. (1997) How does stomatal density of Salixherbacea L. vary with atmospheric CO2 concentration? Thesis, University of Wales, Bangor.

    Google Scholar 

  • Indermühle A., Stocker T. F., Joos F., Fischer H., Smith H. J., Wahlen M., Deck B., Mastrioanni D.,Tschumi J., Blunier T, Meyer R. and Stauffer B. (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398: 121–126.

    Google Scholar 

  • Jones H. G. (1992) Plants and Microclimate. A quantitative approach to environmental physiology, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Keeling C. D., Whorf T. P., Wahlen M. and van der Plicht J. (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375: 666–670.

    Article  Google Scholar 

  • Mauna Loa Data (1997) Internet, http://cdiac.esd.ornl.gov/ trends_html/trends/tables/sio-maun.htm.

    Google Scholar 

  • Raynaud D., Jouzel J., Barnola J. M., Chappellaz J., Delmas R. J. and Lorius C. (1993) The ice record of greenhouse gases. Science 259: 926–934.

    Google Scholar 

  • Rundgren M. and Beerling D. (1999) A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. The Holocene 9: 509–513.

    Article  Google Scholar 

  • Salisbury E. J. (1927) On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society of London B 216: 1–66.

    Article  Google Scholar 

  • Woodward F. I. (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327: 617–618.

    Article  Google Scholar 

  • Woodward F. I. and Kelly C. K. (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131: 311–327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this chapter

Cite this chapter

Birks, H.H. (2000). The amount of CO2 in the air breathed by the Iceman. In: Bortenschlager, S., Oeggl, K. (eds) The Iceman and his Natural Environment. The Man in the Ice, vol 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6758-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6758-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7403-6

  • Online ISBN: 978-3-7091-6758-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics