An Architecture For Interactive Tetrahedral Volume Rendering

  • Davis King
  • Craig M. Wittenbrink
  • Hans J. Wolters
Part of the Eurographics book series (EUROGRAPH)


We present a new architecture for interactive unstructured volume rendering. Our system moves all the computations necessary for order-independent transparency and volume scan conversion from the CPU to the graphics hardware, and it makes a software sorting pass unnecessary. It therefore provides the same advantages for volume data that triangle-processing hardware provides for surfaces. To address a remaining bottleneck — the bandwidth between main memory and the graphics processor — we introduce two new primitives, tetrahedral strips and tetrahedral fans. These primitives allow performance improvements in rendering tetrahedral meshes similar to the improvements triangle strips and fans allow in rendering triangle meshes. We provide new techniques for generating tetrahedral strips that achieve, on the average, strip lengths of 17 on repiesentative darasets. The combined effect of our architecture and new primitives is a 72 to 85 times increase in performance over triangle graphics hardware approaches. These improvements make it possible to use volumetric tetrahedral meshes in interactive applications.


Tetrahedral Mesh Graphic Hardware Triangle Mesh Frame Buffer Volume Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Akeley, P. Haeberli, and D. Burns. tomesh.c. C Program on SGI Developer’s Toolbox CD, 1990.Google Scholar
  2. 2.
    L. Carpenter. The A-buffer, an antialiased hidden surface method. In Proceedings of SIG-GRAPH,pages 103–108. ACM, July 1984. Vol. 18, No. 3.Google Scholar
  3. 3.
    P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the optimization of projective volume rendering. In Proceedings of the Eurographics Workshop, Visualization in Scientific Computing’95, pages 59–71, Chia, Italy, May 1995.Google Scholar
  4. 4.
    M. Deering. Geometry compression. In Proceedings of SIGGRAPH 95, pages 13–20, Aug. 1995.CrossRefGoogle Scholar
  5. 5.
    F Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast rendering. In IEEE Visualization,pages 319–326, San Francisco, CA, Oct. 1996. IEEE.Google Scholar
  6. 6.
    R. Fanas, J. S. B. Mitchel, and C. T. Silva. Zsweep: An efficient and exact projection algorithm for unstructured volume rendering. In ACMIEEE Volume Visualization and Graphics Symposium 2000,page in press, Oct. 2000.Google Scholar
  7. 7.
    R. Fanas and C. Silva. Parallelizing the zsweep algorithm for distributed-shared memory architectures (ST). In to appear International Workshop on Volume Graphics, Long Island, NY, June 2001.Google Scholar
  8. 8.
    S. Gumhold, S Guthe, and W. Strasser. Tetrahedral mesh compression with the cut-bonier machine. In Proceedings IEEE Visualization ‘89,pages 51–58 IEEE Computer Society Press, 1999. Mesh Compression Techniques.Google Scholar
  9. 9.
    H. Hoppe. Optimization of mesh locality for transparent vertex caching. In SIGGRAPH,pages 269 276, Los Angeles, CA, Aug. 1999. ACM.Google Scholar
  10. 10.
    M. Isenburg. Triangle strip compression. In Proceedings of Graphics Interface, pages 197–204, 2000.Google Scholar
  11. 11.
    N. P. Jouppi and C.-F. Chang. Z3: An economical hardware technique for high-quality antialiasing and transparency. In Proceedings of Graphics Hardware,pages 85 93, Los Angeles, CA, Aug. 1999. ACM/Eurographics.Google Scholar
  12. 12.
    M. Karasick, D. Lieber, L. Nackman, and V. Rajan. Visualization of three-dimensional delaunay meshes. Algorithmica, 19 (1–2): 114–128, Sept.-Oct. 1997.MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Krech. Blitzen: Lightning speed 3D geometry accelerator. Presentation slides in Hot Chips 10, Aug 1998.Google Scholar
  14. 14.
    A. Lastra, S. Molnar, M. Olano, and Y. Wang. Real-time programmable shading. In Proceedings of the 1995 Symposium on Interactive 3D Graphics,pages 59–66, Monterey, CA, Apr. 1995. ACM.Google Scholar
  15. 15.
    J.-A. Lee and L.-S. Kim. Single-pass full-screen hardware accelerated antialiasing. In Proceedings of Graphics Hardware,pages 67–75, Interlaken, Switzerland, Aug. 2000. ACM/Eurographics.Google Scholar
  16. 16.
    A. Mammen. Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Computer Graphics and Applications, 9 (4): 43–55, July 1989.CrossRefGoogle Scholar
  17. 17.
    N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for efficient visualization of 3D scalar functions. ACM Computer Graphics (Proceedings of the 1990 Workshop on Volume Visualization), 24 (5): 27–33, 1990.Google Scholar
  18. 18.
    T. Porter and T. Duff. Compositing digital images. In Computer Graphics, pages 253–259, Aug. 1984.Google Scholar
  19. 19.
    S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated volume and isosurface rendering based on cell-projection. In Proceedings of the Visualization, pages 109–116, Oct. 2000.Google Scholar
  20. 20.
    P. Shirley and A. Tuchman. A polygonal approximation to direct scalar volume rendering. In 1990 Workshop on Volume Visualization, pages 63–70, San Diego, CA, Dec. 1990.CrossRefGoogle Scholar
  21. 21.
    C. T. Silva and J. S. Mitchell. The lazy sweep ray casting algorithm for rendering irregular grids. IEEE Transactions on Visualization and Computer Graphics, 3 (2): 142–157, 1997.CrossRefGoogle Scholar
  22. 22.
    C. T. Silva, J. S. Mitchell, and A. E. Kaufman. Fast rendering of irregular grids. In ACM/IEEE Symposium on Volume Visualization, pages 15–22, San Francisco, CA, October 1996.CrossRefGoogle Scholar
  23. 23.
    C. T. Silva, J. S. Mitchell, and P. L. Williams. An exact interactive time visibility ordering algorithm for polyhedral cell complexes. InACM/IEEE Symposium on Volume Visualization, pages 87–94, Research Triangle Park, NC, October 1998.Google Scholar
  24. 24.
    A. Szymczak and J. Rossignac. Compressing the connectivity of tetrahedral meshes. Computer-Aided Design, 32 (8/9): 527–538, Jul./Aug. 2000.CrossRefGoogle Scholar
  25. 25.
    J. Torborg and J. T. Kajiya. Talisman: Commodity realtime 3D graphics for the PC. In Proceedings of SIGGRAPH,pages 353–363, New Orleans, LA, Aug. 1996. ACM.Google Scholar
  26. 26.
    P. L. Williams. Interactive Direct Volume Rendering of Curvilinear and Unstructured Data. PhD thesis, University of Illinois at Urbana-Champaign, 1992.Google Scholar
  27. 27.
    P. L. Williams. Visibility ordering meshed polyhedra. ACM Transactions on Graphics, 11 (2): 103–126, 1992.MATHCrossRefGoogle Scholar
  28. 28.
    S. Winner, M. Kelley, B. Pease, and A. Yen. Hardware accelerated rendering of antialiasing using a modified A-buffer algorithm. In Proceedings of SIGGRAPH,pages 307–316, Los Angeles, CA, Aug. 1997. ACM.Google Scholar
  29. 29.
    C. M. Wittenbrink. Irregular grid volume rendering with composition networks. In Proceedings of IS0026T/SPIE Visual Data Exploration and Analysis V,volume 3298, pages 250–260, San Jose, CA, Jan. 1998. SPIE. Available as Hewlett-Packard Laboratories Technical Report, HPL-97–51-R1.Google Scholar
  30. 30.
    C. M. Wittenbrink. CellFast: Interactive unstructured volume rendering. Technical Report HPL-1999–81(R1), Hewlett-Packard Laboratories, July 1999. Appeared in 1999 IEEE Visualization-Late Breaking Hot Topics.Google Scholar
  31. 31.
    C. M. Wittenbrink. R-buffer. A pointerless A-buffer hardware architecture. In In press Proceedings of Graphics Hardware, Los Angeles, CA, Aug. 2001. ACM/Eurographics. Also available as Technical Report, HPL-2001–12, HP Confidential, Jan. 2001.Google Scholar

Copyright information

© Springer-Verlag/Wien 2001

Authors and Affiliations

  • Davis King
    • 1
  • Craig M. Wittenbrink
    • 2
  • Hans J. Wolters
    • 2
  1. 1.College of ComputingGeorgia Institute of TechnologyUSA
  2. 2.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations