Skip to main content

Communicating Hydrocephalus: The Biomechanics of Progressive Ventricular Enlargement Revisited

  • Conference paper
Intracranial Pressure and Brain Biochemical Monitoring

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 81))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi J et al (1979) Evidence for transventricular absorption in the hydrocephalic dog. Invest Radiol 14:432–437

    Article  PubMed  CAS  Google Scholar 

  2. Bering EA, Sato O (1963) Hydrocephalus: changes in the formation and absorption of cerebrospinal fluid within th ecerebral ventricles. J Neurosurg 20: 1050–1063

    Article  PubMed  Google Scholar 

  3. Biot MA (1941) General theory of three dimensional consolidation. J Appl Phys 12: 1244–1258

    Google Scholar 

  4. Conner ES, Foley L, Black PM (1984) Experimental normal-pressure hydrocephalus is accompanied by increased trans-mantle pressure. J Neurosurg 61: 322–327

    Article  PubMed  CAS  Google Scholar 

  5. Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2: 269–276

    Article  PubMed  CAS  Google Scholar 

  6. Czosnyka M et al (1993) Cerebrospinal compensation in hydrocephalic children. Childs Nerv Syst 9: 17–22

    Article  PubMed  CAS  Google Scholar 

  7. Czosnyka M et al (1993) CO2 cerebrovascular reactivity as a function of perfusion pressure — a modelling study. Acta Neu-rochir(Wien)121: 159–165

    Article  CAS  Google Scholar 

  8. Di Rocco C et al (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5: 81–95

    PubMed  Google Scholar 

  9. Fishman RA (1966) Occult hydrocephalus. N Engl J Med 274: 466–467

    Google Scholar 

  10. Fried A, Shapiro K (1986) Subtle deterioration in shunted childhood hydrocephalus. A biomechanical and clinical profile. J Neurosurg 65: 211–216

    Article  PubMed  CAS  Google Scholar 

  11. Fung YC (1994) A first course in continuum mechanics. Engle-wood Cliffs, New Jersey, Prentice Hall

    Google Scholar 

  12. Guillaume A et al (1997) Effects of perfusion on the mechanical behavior of the brain-exposed to hypergravity. J Biomech 30: 383–389

    Article  PubMed  CAS  Google Scholar 

  13. Guinane JE (1977) Why does hydrocephalus progress? J Neurol Sci 32: 1–8

    Article  PubMed  CAS  Google Scholar 

  14. Hakim CA, Hakim R, Hakim S (2001) Normal-pressure hydrocephalus. Neurosurg Clin N Am 12: 761–773, ix

    PubMed  CAS  Google Scholar 

  15. Hakim S (1971) Biomechanics of hydrocephalus. Acta Neurol Latinoam [Suppl] 1: 169–194

    Google Scholar 

  16. Hakim S, Venegas JG, Burton JD (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5: 187–210

    PubMed  CAS  Google Scholar 

  17. Hoff J, Barber R (1974) Transcerebral mantle pressure in normal pressure hydrocephalus. Arch Neurol 31: 101–105

    PubMed  CAS  Google Scholar 

  18. Kaczmarek M, Subramaniam RP, Neff SR (1997) The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bull Math Biol 59: 295–323

    Article  PubMed  CAS  Google Scholar 

  19. Levine MS et al (1986) Quantitative morphology of medium-sized caudate spiny neurons in aged cats. Neurobiol Aging 7: 277–286

    Article  PubMed  CAS  Google Scholar 

  20. Miyagami M, Nakamura S, Moriyasu N (1975) [Hydrodynamic of the CSE under experimental occlusion of superior sagittal sinus (author’s transl)]. No Shinkei Geka 3: 739–745

    PubMed  Google Scholar 

  21. Mow VC et al (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102: 73–84

    Article  PubMed  CAS  Google Scholar 

  22. Nagashima T et al (1987) Biomechanics of hydrocephalus: a new theoretical model. Neurosurgery 21: 898–904

    Article  PubMed  CAS  Google Scholar 

  23. Pang D, Altschuler E (1994) Low-pressure hydrocephalic state and viscoelastic alterations in the brain. Neurosurgery 35: 643–655; discussion 655–656

    Google Scholar 

  24. Pena A et al (1999) Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery 45: 107–116; discussion 116–118

    Article  PubMed  CAS  Google Scholar 

  25. Punt CJ (1992) Principles of CSF diversion and alternative treatments. Hydrocephalus. In: Schurr PH, Polkey CE (eds) Oxford University Press, p 139–160

    Google Scholar 

  26. Rennels ML et al (1985) Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326: 47–63

    Article  PubMed  CAS  Google Scholar 

  27. Rosenberg GA, Saland L, Kyner WT (1983) Pathophysiology of periventricular tissue changes with raised CSF pressure in cats. J Neurosurg 59: 606–611

    Article  PubMed  CAS  Google Scholar 

  28. Rubin RC et al (1976) Hydrocephalus: III. reconstitution of the cerebral cortical mantle following ventricular shunting. Surg Neurol 5: 179–183

    PubMed  CAS  Google Scholar 

  29. Rubin RC et al (1976) Hydrocephalus: II. cell number and size, and myelin content of the pre-shunted cerebral cortical mantle. Surg Neurol 5: 115–118

    PubMed  CAS  Google Scholar 

  30. Rubin RC et al (1976) Hydrocephalus: I. histological and ultra-structural changes in the pre-shunted cortical mantle. Surg Neurol 5: 109–114

    PubMed  CAS  Google Scholar 

  31. Shapiro K, Fried A, Marmarou A (1985) Biomechanical and hydrodynamic characterization of the hydrocephalic infant. J Neurosurg 63: 69–75

    Article  PubMed  CAS  Google Scholar 

  32. Shapiro K et al (1987) Progressive ventricular enlargement in cats in the absence of transmantle pressure gradients. J Neurosurg 67: 88–92

    Article  PubMed  CAS  Google Scholar 

  33. Shapiro K, Marmarou A, Shulman K (1982) Abnormal brain biomechanics in the hydrocephalic child. From: concepts in pediatric neurosurgery vol 2. Pediatr Neurosurg 19: 216–222; discussion 223

    Article  Google Scholar 

  34. Shapiro K et al (1985) Experimental feline hydrocephalus. The role of biomechanical changes in ventricular enlargement in cats. J Neurosurg 63: 82–87

    Article  PubMed  CAS  Google Scholar 

  35. Strecker EP et al (1973) Cerebrospinal fluid absorption in communicating hydrocephalus. Evaluation of transfer of radioactive albumin from subarachnoid space to plasma. Neurology 23: 854–864

    PubMed  CAS  Google Scholar 

  36. Tans JT, Poortvliet DC (1988) Reduction of ventricular size after shunting for normal pressure hydrocephalus related to CSF dynamics before shunting. J Neurol Neurosurg Psychiatry 51: 521–525

    Article  PubMed  CAS  Google Scholar 

  37. Tenti G, Drake JM, Sivaloganathan S (2000) Brain biomechanics: mathematical modeling of hydrocephalus. Neurol Res 22: 19–24

    PubMed  CAS  Google Scholar 

  38. White DN et al (1979) The limitation of pulsatile flow through the acqueduct of Sylvius as a cause of hydrocephalus. J Neurol Sci 42: 11–51

    Article  PubMed  CAS  Google Scholar 

  39. Wislocki GB, Putnam TJ (1921) Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anatomy 29: 313–316

    Article  Google Scholar 

  40. Zienkiewicz OC, Taylor RL (1991) The finite element method. McGraw-Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this paper

Cite this paper

Peña, A., Harris, N.G., Bolton, M.D., Czosnyka, M., Pickard, J.D. (2002). Communicating Hydrocephalus: The Biomechanics of Progressive Ventricular Enlargement Revisited. In: Czosnyka, M., Pickard, J.D., Kirkpatrick, P.J., Smielewski, P., Hutchinson, P. (eds) Intracranial Pressure and Brain Biochemical Monitoring. Acta Neurochirurgica Supplements, vol 81. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6738-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6738-0_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7397-8

  • Online ISBN: 978-3-7091-6738-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics