Locality in Relativistic Quantum Mechanics

  • F. Coester
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 14)


Manifolds of essentially localized states can be defined within the framework of relativistic quantum mechanics without reference to infinite systems.


Unitary Representation Infinite System Mass Operator Linear Manifold Relativistic Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Wigner, Ann. Math. 40, 141 (1939)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Haag, “Local Quantum Physics”, Springer Verlag (1993)Google Scholar
  3. 3.
    H.J. Borchers J. Math. Phys. 41, 3604 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    B.D. Keister and W. N. Polyzou, Adv. in Nuc. Phys. 20, 225 (1991)Google Scholar
  5. 5.
    F. Coester and W.N. Polyzou, Phys. Rev. D26 1348 (1982)MathSciNetADSGoogle Scholar
  6. 6.
    W.N. Polyzou, J. Math. Phys. to be published.Google Scholar
  7. 7.
    R. Brunetti, D. Guido and R. Longo, “Modular Localization and Wigner Particles”; math-ph/0203021v2Google Scholar
  8. 8.
    J. Mund, Annales Henri Poincaré 2 907 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    L. Fasarella and B. Schroer: J. Phys. A: Math. Gen. 35 (2002)Google Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • F. Coester
    • 1
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations