Advertisement

Photodisintegration of the Deuteron between = 2.4 and 4.0 MeV

  • W. Tornow
  • N. G. Czakon
  • C. R. Howell
  • A. Hutcheson
  • J. H. Kelley
  • V. N. Litvinenko
  • S. Mikhailov
  • I. V. Pinayev
  • G. J. Weisel
  • H. Witała
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 14)

Abstract

Big-bang nucleosynthesis (BBN) is an observational cornerstone of the hot big-bang cosmology. According to [1] the p(n,γ)d reaction is of special interest because the big-bang abundance of deuterium is most sensitive to the baryon density. However, in the most important energy range for BBN, i.e., from 25–200 keV in the c.m. system, experimental data are completely missing. In fact, published data exist only at thermal energies and at n-p c.m. energies above 275 keV. Therefore, theoretical models have been used [1] in the BBN energy range that are normalized to the high-precision thermal neutron capture cross-section data.

Keywords

Neutron Detector Baryon Density Liquid Scintillator Deuteron Breakup Liquid Scintillator Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Burles et al.: Phys. Rev. Lett. 82, 4176 (1999); astro-ph/9901157ADSCrossRefGoogle Scholar
  2. 2.
    H. Arenhövel: Private Communication (2001)Google Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • W. Tornow
    • 1
  • N. G. Czakon
    • 1
  • C. R. Howell
    • 1
  • A. Hutcheson
    • 1
  • J. H. Kelley
    • 1
  • V. N. Litvinenko
    • 2
  • S. Mikhailov
    • 2
  • I. V. Pinayev
    • 2
  • G. J. Weisel
    • 3
  • H. Witała
    • 4
  1. 1.Triangle Universities Nuclear Laboratory and Duke UniversityDurhamUSA
  2. 2.Duke University Free-Electron Laser LaboratoryDuke UniversityDurhamUSA
  3. 3.Penn State AltoonaAltoonaUSA
  4. 4.Jagiellonian UniversityCracowPoland

Personalised recommendations