Advertisement

Energy Spectra of Λ9Be

  • E. Cravo
  • A. C. Fonseca
  • Y. Koike
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 14)

Abstract

The hypernucleus Λ 9 Be is investigated using the α + Λ + α cluster model. The corresponding Faddeev equations are solved for different α − α and Λ − α interactions that describe both 8Be and Λ 5 He energy spectra. For the ground state Jπ = 1/2+ and excited states 3/2+ and 5/2+ we include the Coulomb repulsion between the α’s and calculate, in addition to the energy eigenvalues, the α− and Λ−particle mean radius, the rms charge radius, the electric quadrupole moment (Q), as well as the magnetic dipole. Structural differences between 9Be and Λ 9 Be lead to values of Q and μ that have opposite sign. Unlike previous theoretical work we find only two degenerate negative parity resonances 1/2 (3/2) but, in addition, we get two degenerate positive parity resonances with Jπ = 7/2+ (9/2+) at higher energy which, together with the bound states, complete the positive parity rotational band.

Keywords

Partial Wave Positive Parity Coulomb Repulsion Negative Parity Faddeev Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Feshbach: In: Proc. of the Summer Study Meeting on Kaon Physics and Facilities, H. Palevsky (ed.), p. 185 (BNL 18335) 1973Google Scholar
  2. 2.
    E. Gravo, A.C. Fonseca and Y. Koike: Phys. Rev. C66 014001 (2002)ADSGoogle Scholar
  3. 3.
    A.C. Fonseca and M.T. Peña: Nucl. Phys. A487, 92 (1988)ADSGoogle Scholar
  4. 4.
    E. Cravo: Phys. Rev. C54, 523 (1996)ADSGoogle Scholar
  5. 5.
    S. Oryu et al.: Few-Body Systems 28, 103 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Sunami and H. Narumi: Prog. Theor. Phys. 66, 355 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    L.D. Faddeev: JETP 12, 1014 (1961).MathSciNetGoogle Scholar
  8. 8.
    D.R. Lehman et al.: Phys. Rev. C29, 1450 (1984)ADSGoogle Scholar
  9. 9.
    Y. Koike: Phys. Rev. C42, R2286 (1990)MathSciNetADSGoogle Scholar
  10. 10.
    M. Jurič et al.: Nucl. Phys. B52, 1 (1973)ADSGoogle Scholar
  11. 11.
    H. Akikawa et al.: Phys. Rev. Lett. 88, 082501 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    F. Ajzenberg-Selove: Nucl. Phys. A490, 1 (1988)ADSGoogle Scholar
  13. 13.
    T. Yamada et al.: Phys. Rev. C38, 854 (1988) and references thereinADSGoogle Scholar
  14. 14.
    R.H. Dalitz and A. Gal: Phys. Rev. Lett. 36, 362 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    W. Brüeckner et al.: Phys. Lett. B55, 107 (1975); 79B, 157 (1978)ADSGoogle Scholar
  16. 16.
    S. Ajimura et al.: Nucl. Phys. A639, 93C (1998)ADSGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • E. Cravo
    • 1
  • A. C. Fonseca
    • 1
  • Y. Koike
    • 2
  1. 1.Centro de Física NuclearUniversity of LisbonLisbonPortugal
  2. 2.Science Research CenterHosei UniversityChiyoda-ku, TokyoJapan

Personalised recommendations