Solution of Nd Breakup Scattering Problem in Configuration Space

  • V. M. Suslov
  • B. Vlahovic
Part of the Few-Body Systems book series (FEWBODY, volume 14)


The configuration-space Faddeev equations for the breakup scattering problem are solved using a new method of partial inversion. Unlike other computations this one keeps the incoming wave in the asymptotic conditions. Using the standard spline-decomposition for the angle variable and Numerov’s method for the hyperradius optimizes considerably the inversion due to the sparse block structure of the matrix. We report on calculations of the inelasticities and phase shifts, as well as the breakup amplitudes for nucleon-deuteron scattering for laboratory energies 14.1 and 42.0 MeV. The results are compared with calculations of other authors.


Faddeev Equation Radial Derivative Deuteron Wave Function Partial Inversion Faddeev Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.P. Merkuriev, C. Gignoux, A. Laverne: Ann. Phys. 99, 30 (1976)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    A.A. Kvitsinsky, Yu.A. Kuperin, S.P. Merkuriev, A.K. Motovilov, S.L. Yakovlev: Fiz. Elem. Chastis At. Yadra 17, 267 (1986)Google Scholar
  3. 3.
    J.L. Friar, B.F. Gibson, G. Berthold, J. Haidenbauer, Y. Koike, G.L. Payne, J.A. Tjon, W.M. Kloet: Phys. Rev. C42, 1838 (1990)ADSGoogle Scholar
  4. 4.
    J.L. Friar, G.L. Payne, W. Glöckle, D. Hüber, H. Witała: Phys. Rev. C51, 2356 (1995)ADSGoogle Scholar
  5. 5.
    A. Kievsky, M. Viviani, S. Rosati: Phys. Rev. C64, 024002 (2001)ADSGoogle Scholar
  6. 6.
    S.P. Merkuriev, L.D. Faddee: Quantum Scattering Theory for Few-Particle Systems (in Russian). Moscow: Nauka 1985Google Scholar
  7. 7.
    S.P. Merkuriev: Ann. Phys. 130, 3975 (1980); S.P. Merkuriev: Acta Physica Austriaca Suppl. XXIII, 65 (1981)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • V. M. Suslov
    • 1
  • B. Vlahovic
    • 2
    • 3
  1. 1.Dept. of Mathematical and Computational PhysicsSt. Petersburg State UniversityPetrodvorets, St. PetersburgRussia
  2. 2.Department of PhysicsNorth Carolina Central UniversityDurhamUSA
  3. 3.Jefferson LabNewport NewsUSA

Personalised recommendations