Chromosome 21 KIR channels in brain development

  • E. Thiery
  • S. Thomas
  • S. Vacher
  • A.-L. Delezoide
  • J. M. Delabar
  • N. Créau
Part of the Journal of Neural Transmission Supplement 67 book series (NEURAL SUPPL, volume 67)


Two KIR (K+ Inwardly Rectifying) channel genes have been identified on chromosome 21, in a region associated with important phenotypic features of trisomy 21, including mental retardation: KIR3.2 (GIRK2) and KIR4.2. We analysed the expression of these channel genes in developing human and mouse brains to determine the possible role of the corresponding channels in brain development and function. KIR3.2, which has been extensively studied in the mouse, was found to be expressed in the human cerebellum during development. The KIR4.2 channel is expressed later in development in both mice and humans. We compared the expression of these channels in terms of RNA and protein levels and discussed the potential synergy and consequences of the overexpression of these channels in Down’s syndrome brain development.


Purkinje Cell Down Syndrome Mitral Cell Pontine Nucleus External Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet 9 (2): 195–202PubMedCrossRefGoogle Scholar
  2. Burrone J, O’Byrne M, Murthy VN (2002) Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420 (6914): 414–418PubMedCrossRefGoogle Scholar
  3. Chen SC, Ehrhard P, Goldowitz D, Smeyne RJ (1997) Developmental expression of the GIRK family of inward rectifying potassium channels: implications for abnormalities in the weaver mutant mouse. Brain Res 778 (2): 251–264PubMedCrossRefGoogle Scholar
  4. Curran ME (1998) Potassium ion channels and human disease: phenotypes to drug targets? Curr Opin Biotech 9: 565–572PubMedCrossRefGoogle Scholar
  5. Dahmane N, Ghezala GA, Gosset P, Chamoun Z, Dufresne-Zacharia MC, Lopes C, Rabatel N, Gassanova-Maugenre S, Chettouh Abramowski V, Fayet E, Yaspo ML, Korn B, Blouin JL, Lehrach H, Poutska A, Antonarakis SE, Sinet PM, Sinet PM, Creau N, Delabar JM (1998) Transcriptional map of the 2.5-Mb CBR-ERG region of chromosome 21 involved in Down syndrome. Genomics 48 (1): 12–23PubMedCrossRefGoogle Scholar
  6. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413 (6852): 211–218PubMedCrossRefGoogle Scholar
  7. Gosset P, Ghezala GA, Korn B, Yaspo ML, Poutska A, Lehrach H, Sinet PM, Creau N (1997) A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1). Genomics 44 (2): 237–241PubMedCrossRefGoogle Scholar
  8. Gosset P, Ait-Ghezala G, Sinet PM, Creau N (1999) Isolation and analysis of chromosome 21 genes potentially involved in Down syndrome. J Neural Transm [Suppl] 57: 197–209Google Scholar
  9. Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K(+) channel, Kir4. 1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 281 (3): C922 — C931PubMedGoogle Scholar
  10. Hill CE, Briggs MM, Liu J, Magtanong L (2002) Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel. Am J Physiol Gastrointest Liver Physiol 282 (2): G233 — G240PubMedGoogle Scholar
  11. Inanobe A, Yoshimoto Y, Horio Y, Morishige KI, Hibino H, Matsumoto S, Tokunaga Y, Maeda T, Hata Y, Takai Y, Kurachi Y (1999) Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci 19 (3): 1006–1017PubMedGoogle Scholar
  12. Johnson EW (1998) CaBPs and other immunohistochemical markers of the human vorneronasal system: a comparison with other mammals. Microsc Res Tech 41(6): 530541Google Scholar
  13. Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE (1998) A novel inward rectifier K+ channel with unique pore properties. Neuron 20 (5): 995–1005PubMedCrossRefGoogle Scholar
  14. Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ (1998) CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 11 (3): 161–172PubMedCrossRefGoogle Scholar
  15. Lesage F, Duprat F, Fink M, Guillemare E, Coppola T, Lazdunski M, Hugnot JP (1994) Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett 353 (1): 37–42PubMedCrossRefGoogle Scholar
  16. Liao YJ, Jan YN, Jan LY (1996) Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J Neurosci 16 (22): 7137–7150PubMedGoogle Scholar
  17. Mrk MD, Herlitze S (2000) G-protein mediated gating of inward-rectifier K+ channels. Eur J Biochem 267 (19): 5830–5836CrossRefGoogle Scholar
  18. Nijjar RK, Murphy C (2002) Olfactory impairment increases as a function of age in persons with Down syndrome. Neurobiol Aging 23 (1): 65–73PubMedCrossRefGoogle Scholar
  19. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11 (2): 126–129PubMedCrossRefGoogle Scholar
  20. Pearson WL, Dourado M, Schreiber M, Salkoff L, Nichols CG (1999) Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver. J Physiol 514: 639–653PubMedCrossRefGoogle Scholar
  21. Peleg S, Varon D, Ivanina T, Dessauer CW, Dascal N (2002) G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron 33 (1): 87–99PubMedCrossRefGoogle Scholar
  22. Pessia M, Imbrici P, D’Adamo MC, Salvatore L, Tucker SJ (2001) Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1. J Physiol 532 (Pt 2): 359–367PubMedCrossRefGoogle Scholar
  23. Peuchmaur M, Emilie D, Crevon MC, Solal-Celigny P, Maillot MC, Lemaigre G, Galanaud P (1990) IL-2 mRNA expression in Tac-positive malignant lymphomas. Am J Pathol 136 (2): 383–390PubMedGoogle Scholar
  24. Rachidi M, Lopes C, Gassanova S, Sinet PM, Vekemans M, Attie T, Delezoide AL, Delabar JM (2000) Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development. Mech Dev 93 (1–2): 189–193PubMedCrossRefGoogle Scholar
  25. Shuck ME, Piser TM, Bock JH, Slightom JL, Lee KS, Bienkowski MJ (1997) Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kirl. 2 and Kir1.3). J Biol Chem 272 (1): 586–593PubMedCrossRefGoogle Scholar
  26. Signorini S, Liao YJ, Duncan SA, Jan LY, Stoffel M (1997) Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc Natl Acad Sci USA 94 (3): 923–927PubMedCrossRefGoogle Scholar
  27. Slesinger PA, Stoffel M, Jan YN, Jan LY (1997) Defective gamma-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice. Proc Natl Acad Sci USA 94 (22): 12210–12217PubMedCrossRefGoogle Scholar
  28. Smith TD, Bhatnagar KP, Shimp KL, Kinzinger JH, Bonar CJ, Burrows AM, Mooney MP, Siegel MI (2002) Histological definition of the vomeronasal organ in humans and chimpanzees, with a comparison to other primates. Anat Rec 267 (2): 166–176PubMedCrossRefGoogle Scholar
  29. Sutherland ML, Williams SH, Abedi R, Overbeek PA, Pfaffinger PJ, Noebels JL (1999) Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression. Proc Natl Acad Sci USA 96 (5): 2451–2455PubMedCrossRefGoogle Scholar
  30. Thiery E, Gosset P, Damotte D, Delezoide AL, de Saint-Sauveur N, Vayssettes C, Creau N (2000) Developmentally regulated expression of the murine ortholog of the potassium channel KIR4.2 (KCNJ15). Mech Day 95 (1–2): 313–316Google Scholar
  31. Wei J, Dlouhy SR, Bayer S, Piva R, Verina T, Wang Y, Feng Y, Dupree B, Hodes ME, Ghetti B (1997) In situ hybridization analysis of Grik2 expression in the developing central nervous system in normal and weaver mice. J Neuropathol Exp Neurol 56 (7): 762–771PubMedGoogle Scholar
  32. Wei J, Hodes ME, Piva R, Feng Y, Wang Y, Ghetti B, Dlouhy SR (1998) Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics 51 (3): 379–390PubMedCrossRefGoogle Scholar
  33. Wetter S, Murphy C (1999) Individuals with Down’s syndrome demonstrate abnormal olfactory event-related potentials. Clin Neurophysiol 110 (9): 1563–1569PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • E. Thiery
    • 1
  • S. Thomas
    • 1
  • S. Vacher
    • 2
  • A.-L. Delezoide
    • 3
  • J. M. Delabar
    • 1
  • N. Créau
    • 1
    • 4
  1. 1.EA3508Université Denis DiderotParisFrance
  2. 2.Unité de Différentiation cellulaireISRECEpalingesSwitzerland
  3. 3.Biologie du DéveloppementHôpital Robert DebréParisFrance
  4. 4.EA3508Université Denis DiderotParis Cedex 05France

Personalised recommendations