Skip to main content

Overexpression of C1-tetrahydrofolate synthase in fetal Down Syndrome brain

  • Chapter
Advances in Down Syndrome Research

Part of the book series: Journal of Neural Transmission Supplement 67 ((NEURAL SUPPL,volume 67))

Summary

Trisomy 21, Down Syndrome, is the most common genetic cause of human mental retardation and results from non-disjunction of chromosome 21. Several reports have been linking folate metabolism to DS and indeed, chromosome 21 even encodes for a specific folate carrier. The availability of brain tissue along with the advent of proteomics enabled us to identify and quantify C1-tetrahydrofolate synthase (THF-S), a key element in folate metabolism in brain along with other enzymes involved in C1-metabolism.

Brains of controls and DS subjects at the 18th–19th week of gestation were homogenised and separated on 2 dimensional gel electrophoresis with subsequent in-gel digestion and mass spectrometrical identification and quantification with specific software.

THF-S was represented by three spots, possibly representing isoforms or posttranslational modifications. Two spots were significantly, about twofold, increased in fetal DS brain:

Controls [means ± SD: (spot 1) 2.55 ± 0.69; (spot 3) 1.39 ± 0.86] vs. Down syndrome [means ± SD: (spot 1) 4.25 ± 1.63; (spot 3) 4.43 ± 2.13].

These results were reproducible when THF-S levels were normalised versus the housekeeping protein actin and neuron specific enolase to compensate cell or neuronal loss.

C1-metabolism related enzymes ribose-phosphate pyrophosphokinase I, inositol monophosphate dehydrogenase, guanidine monophosphate synthease and S-adenosylmethionine synthase, gamma form, were comparable between groups.

Overexpression of this key enzyme in fetal DS brain at the early second trimester may indicate abnormal folate metabolism and may reflect folate deficiency. This may be of pathomechanistic relevance and thus extends and confirms the involvement of folate metabolism in trisomy 21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Gazali LI, Padmanabhan R, Melnyk S, Yi P, Pogribny IP, Pogribna M, Bakir M, Hamid ZA, Abdulrazzaq Y, Dawodu A, James SJ (2001) Abnormal folate metabolism and genetic polymorphism of the folate pathway in a child with Down syndrome and neural tube defect. Am J Med Genet 103: 128–132

    Article  PubMed  CAS  Google Scholar 

  • Alvarez L, Corrales F, Martin-Duce A, Mato JM (1993) Characterisation of a full-length cDNA encoding human liver S-adenosylmethionine synthetase: tissue-specific gene expression and mRNA levels in hepatopathies. Biochem J 293: 481–486

    PubMed  CAS  Google Scholar 

  • Appling DR (1991) Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J 5: 2645–2651

    PubMed  CAS  Google Scholar 

  • Appling DR, Rabinowitz (1985) Regulation of expression of the ADE3 gene for yeast C1-tetrahydrofolate synthase, a trifunctional enzyme involved in one-carbon metabolism. J Biol Chem 260: 1248–1256

    CAS  Google Scholar 

  • Berndt P, Hobohm U, Langen H (1999) Reliable automatic protein identification from matrix assisted laser desorption/ionization mass spectrometric peptide fingerprints. Electrophoresis 20: 3521–3526

    Article  PubMed  CAS  Google Scholar 

  • Blount BC, Mack MM, Wehr CM, Macgregor JT, Hiatt RA, Wickremasinghe RG, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Sci USA 94: 3290–3295

    Article  CAS  Google Scholar 

  • Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151: 862–877

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Chadefaux-Vekemans B, Coude M, Muller F, Oury JF, Chabli A, Jais J, Kamoun P (2002) Methylenetetrahydrofolate reductase polymorphism in the etiology of Down syndrome. Pediatr Res 51: 766–767

    PubMed  CAS  Google Scholar 

  • Duthie SJ (1999) Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull 55: 578–592

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ (1995) Down Syndrome. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease 7th edn. McGraw Hill, New York, pp 749–794

    Google Scholar 

  • Fountoulakis M, Langen H (1997) Identification of proteins by matrix assisted laser desorption ionisation mass spectrometry following in-gel digestion in low salt, nonvotalie buffer and simplified peptide recovery. Anal Biochem 250: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Fowler BM, Giuliano AR, Piyathilake C, Nour M, Hatch K (1998) Hypomethylation in cervical tissue: is there a correlation with folate status. Cancer Epidemiol Biomarkers Prey 7: 901–906

    CAS  Google Scholar 

  • Hassold TJ, Burrage LC, Chan ER, Judis LM, Schwartz S, James SJ, Jacobs PA, Thomas NS (2001) Maternal folate polymorphisms and the etiology of human nondisjunction. Am J Hum Genet 69: 434–439

    Article  PubMed  CAS  Google Scholar 

  • Hine RJ, James SJ (2000) Down syndrome and folic acid update. J Am Diet Assoc 100: 1004

    Google Scholar 

  • Hobbs CA, Sherman SL, Yi P, Hopkins SE, Torfs CP, Hine RJ, Pogribna M, Rozen R, James SJ (2000) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Genet 67: 623–630

    Article  PubMed  CAS  Google Scholar 

  • Hunt PA, Lemaire-Adkins R (1998) Genetic control of mammalian female meiosis. Curr Top Dev Biol 37: 359–381

    Article  PubMed  CAS  Google Scholar 

  • Jacob RA, Gretz DM, Taylor PC, James SJ, Pogribny IP, Miller BJ, Henning SM, Swendseid ME (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 128: 1204–1212

    PubMed  CAS  Google Scholar 

  • James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ, Gibson JB, Yi P, Tafoya DL, Swenson DH, Wilson VL, Gaylor DW (1999) Abnormal folate metabolism and mutation in the methylenetetragydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr 70: 495–501

    PubMed  CAS  Google Scholar 

  • Kitzmueller E, Greber S, Fountoulakis M, Lubec G (2001) Carbohydrate handling enzymes in fetal Down syndrome brain. J Neural Transm [Suppl] 61: 203–210

    Google Scholar 

  • Langen H, Roeder D, Juranville J, Fountoulakis M (1997) Effect of protein application mode and acrylamide concentration on the resolution of protein spots separated by two-dimensional gel electrophoresis. Electrophoresis 18: 2085–2090

    Article  PubMed  CAS  Google Scholar 

  • MacGregor JT, Wehr C, Hiatt RA, Peters B, Tucker JD, Langlois RG, Jacob RA, Jensen RH, Yager JW, Shigenaga MK, Frei B, Eynon BP, Ames BN (1997) “Spontaneous” genetic damage in man: evaluation of interindividual variability, relationship among markers of damage, and influence of nutritional status. Mutat Res 377: 125–135

    Google Scholar 

  • O’Leary VB, Parle-McDermott A, Molloy AM, Kirke PN, Johnson Z, Conley M, Scott JM, Mills JL (2002) MTRR and MTHFR polymorphism: link to Down syndrome? Am J Med Genet 107: 151–155

    Article  PubMed  Google Scholar 

  • Pasternack LB, Littlepage LE, Laude DA Jr, Appling DR (1996) 13C NMR analysis of the use of alternative donors to the tetrahydrofolate-dependent one-carbon pools in Saccharomyces cerevisae. Arch Biochem Biophys 326: 158–165

    Google Scholar 

  • Peeters M, Rethore MO, de Kermadec S, Lejeune J (1989) Correlation between the effects of rT3 and IMP dehydrogenase inhibitors on normal and trisomic 21 lymphocyte cultures. Ann Genet 32: 211–213

    CAS  Google Scholar 

  • Picton H, Briggs D, Gosden R (1998) The molecular basis of oocyte growth and development. Mol Cell Endocrinol 145: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt DS (1999) Folate and homocysteine metabolism and gene polymorphisms in the etiology of Down syndrome. Am J Clin Nutr 70: 429–430

    PubMed  CAS  Google Scholar 

  • Shane B (1989) Polyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45: 263–335

    Article  PubMed  CAS  Google Scholar 

  • Smith G, Berg J (1976) Down’s Anomaly, 2nd edn. Churchill Livingstone, Edinburgh New York

    Google Scholar 

  • Titenko-Holland N, Jacob RA, Shang N, Balaraman A, Smith MT (1998) Micronuclei in lymphocytes and exfoliated buccal cells of postmenopausal women with dietary change in folate. Mutat Res 417: 101–114

    PubMed  CAS  Google Scholar 

  • van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ (2001) Folate, homocysteine and neural tube defects: an overview. Exp Biol Med 226: 243–270

    Google Scholar 

  • Wahls WP, Song JM, Smith GR (1993) Single-stranded DNA binding activity of Cltetrahydrofolate synthase enzymes. J Biol Chem 268: 23792–23798

    PubMed  CAS  Google Scholar 

  • Xu GL, Bestor TH, Bourchis D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu XY, Russo TT, Veigas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402: 187–191

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Fountoulakis, M., Gulesserian, T., Lubec, G. (2003). Overexpression of C1-tetrahydrofolate synthase in fetal Down Syndrome brain. In: Lubec, G. (eds) Advances in Down Syndrome Research. Journal of Neural Transmission Supplement 67, vol 67. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6721-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6721-2_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-40776-9

  • Online ISBN: 978-3-7091-6721-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics