Skip to main content

An altered antioxidant balance occurs in Down syndrome fetal organs: Implications for the “gene dosage effect” hypothesis

  • Chapter
Advances in Down Syndrome Research

Part of the book series: Journal of Neural Transmission Supplement 67 ((NEURAL SUPPL,volume 67))

Summary

Down syndrome (DS) is the congenital birth defect responsible for the greatest number of individuals with mental retardation. It arises due to trisomy of human chromosome 21 (HSA21) or part thereof. To date there have been limited studies of HSA21 gene expression in trisomy 21 conceptuses. In this study we investigate the expression of the HSA21 antioxidant gene, Cu/Zn-superoxide dismutase-1 (SOD1) in various organs of control and DS aborted conceptuses. We show that SOD1 mRNA levels are elevated in DS brain, lung, heart and thymus. DS livers show decreased SOD1 mRNA expression compared with controls. Since non-HSA21 antioxidant genes are reported to be concomitantly upregulated in certain DS tissues, we examined the expression of glutathione peroxidase-1 (GPX1) in control and DS fetal organs. Interestingly, GPX1 expression was unchanged in the majority of DS organs and decreased in DS livers. We examined the SOD1 to GPX1 mRNA ratio in individual organs, as both enzymes form part of the body’s defense against oxidative stress, and because a disproportionate increase of SOD1 to GPX1 results in noxious hydroxyl radical damage. All organs investigated show an approximately 2-fold increase in the SOD1 to GPX1 mRNA ratio. We propose that it is the altered antioxidant ratio that contributes to certain aspects of the DS phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SOD1:

human Cu/Zn-superoxide dismutase

GPX1:

human selenium-dependent glutathione peroxidase

DS:

Down syndrome

HSA21:

human chromosome 21

References

  • Anneren KG, Epstein CJ (1987) Lipid peroxidation and superoxide dismutase-1 and glutathione peroxidase activities in trisomy 16 fetal mice and human trisomy 21 fibroblasts. Pediatr Res 21: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Avraham KB, Sugarman H, Rotshenker S, Groner Y (1991) Down’s syndrome: morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. J Neurocytol 20: 208–215

    Article  PubMed  CAS  Google Scholar 

  • Bar-Peled O, Korkotian E, Segal M, Groner Y (1996) Constitutive overexpression of Cu/Zn superoxide dismutase exacerbates kainic acid-induced apoptosis of transgenicCu/Zn superoxide dismutase neurons. Proc Natl Acad Sci 93: 8530–8535

    Article  PubMed  CAS  Google Scholar 

  • Brooksbank BWL, Balazs R (1984) Superoxide dismutase, glutathione peroxidase and lipoperoxidation in Down’s Syndrome fetal brain. Dev Brain Res 16: 37–44

    Article  CAS  Google Scholar 

  • Ceballos I, Nicole A, Briand P, Grimber G, Delacourte A, Flament S, Blouin JL, Thevenin M, Kamoun P, Sinet M (1991) Expression of human Cu-Zn superoxide dismutase gene in transgenic mice: model for gene dosage effect in Down syndrome. Free Rad Res Commun 12–13: 581–589

    Article  Google Scholar 

  • Ceballos-Picot I, Nicole A, Clement M, Bourre JM, Sinet PM (1992) Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mice overexpressing copper-zinc superoxide dismutase. Mutat Res 275: 281293

    Google Scholar 

  • Chada S, Le Beau MM, Casey L, Newburger PE (1990) Isolation and chromosomal localization of the human glutathione peroxidase gene. Genomics 6: 268–271

    Article  PubMed  CAS  Google Scholar 

  • Chaushu S, Yefenof E, Becker A, Shapira J, Chaushu G (2002) Severe impairment of secretory Ig production in parotid saliva of Down syndrome individuals. J Dent Res 81: 308–312

    Article  PubMed  CAS  Google Scholar 

  • Cheon MS, Kim SH, Yaspo ML, Blasi F, Aoki Y, Melen K, Lubec G (2003a) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain. Challenging the gene dosage effect hypothesis, part I. Amino Acids 24: 111–117

    Google Scholar 

  • Cheon MS, Bajo M, Kim SH, Claudio JO, Stewart AK, Patterson D, Kruger WD, Kondoh H, Lubec G (2003b) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain. Challenging the gene dosage effect hypothesis, part II Amino Acids 24: 119–125

    CAS  Google Scholar 

  • Cheon MS, Kim SH, Ovod V, Kopitas Jerala N, Morgan JI, Hatefi Y, Ijuin T, Takenawa Y, Lubec G (2003c) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain. Challenging the gene dosage effect hypothesis, part III Amino Acids 24: 127–134

    CAS  Google Scholar 

  • Davies KJA (1987) Protein damage and degradation by oxygen radicals. J Biol Chem 262: 9895–9901

    PubMed  CAS  Google Scholar 

  • de Haan JB, Newman JD, Kola I (1992) Cu/Zn superoxide dismutase mRNA and enzyme activity, and susceptibility to lipid peroxidation, increases with aging in murine brains. Mol Brain Res 13: 179–186

    Article  PubMed  Google Scholar 

  • de Haan JB, Tymms MJ, Cristiano F, Kola I (1994) Expression of copper/zinc superoxide dismutase and glutathione peroxidase in organs of developing mouse embryos, fetuses and neonates. Pediatr Res 35: 188–196

    Article  PubMed  Google Scholar 

  • de Haan JB, Cristino C, Iannello R, Bladier C, Kelner MJ, Kola I (1996) Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide. Hum Mol Genet 5: 283–292

    Article  PubMed  Google Scholar 

  • Delabar JM, Nicole A, D’Auriol L, Jacob Y, Meunier-Rotival M, Galibert F, Sinet PM, Jerome H (1987) Cloning and sequencing of a rat CuZn superoxide dismutase cDNA: correlation between CuZn superoxide dismutase mRNA levels and enzyme activity in rat and mouse tissues. Eur J Biochem 166: 181–187

    Article  PubMed  CAS  Google Scholar 

  • De La Torre R, Casado A, Lopez-Fernandez E, Carrascosa D, Ramirez V, Saez J (1996) Overexpression of copper-zinc superoxide dismutase in trisomy 21. Experientia 52: 871–873

    Article  Google Scholar 

  • Diomede L, Salmona M, Albani D, Bianchi M, Bruno A, Salmona S, Nicolini U (1999) Alteration of SREBP activation in liver of trisomy 21 fetuses. Biochem Biophys Res Commun 260: 499–503

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, Rotman G, Bry C, Groner Y (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci USA 84: 8044–8048

    Article  PubMed  CAS  Google Scholar 

  • Feaster WW, Kwok LW, Epstein C (1977) Dosage effects for superoxide dismutase-1 in nucleated cells aneuploid for chromosome 21. Am J Hum Genet 29: 563–570

    PubMed  CAS  Google Scholar 

  • Fong C, Brodeur GM (1987) Down’s syndrome and leukemia: epidemiology, genetics,cytogenetics and mechanisms of leukemogenesis. Cancer Genet Cytogenet 28: 55–76

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201: 875–880

    Article  PubMed  CAS  Google Scholar 

  • Frischer H, Chu LK, Ahmad T, Justice P, Smith GF (1981) Superoxide dismutase and glutathione peroxidase abnormalities in erthyrocytes and lymphoid cells in Down syndrome. In: Brewer GJ (ed) The Red Cell: Fifth Ann Arbor Conference. AL Liss, New York, pp 269–283

    Google Scholar 

  • Fuentes JJ, Genesca L, Kingsbury TJ, Cunningham KW, Perez-Riba M, Estivill X, de la Luna S (2000) DCSR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum Mol Genet 9: 1681–1690

    CAS  Google Scholar 

  • Gilles L, Ferradini C, Foos J, Pucheault J, Allard D, Sinet PM, Jerome H (1976) The estimation of red cell superoxide dismutase activity by pulse radiolysis in normal and trisomic cells. Hum Genet 31: 197–202

    Article  Google Scholar 

  • Greber-Platzer S, Scatzmann-Turhani D, Wollenek G, Lubec G (1999a) Evidence against the current hypothesis of “gene dosage effects” of trisomy 21: ets-2, encoded on chromosome 21 is not overexpressed in hearts of patients with Down syndrome. Biochem Biophys Res Commun 254: 395–399

    Article  PubMed  CAS  Google Scholar 

  • Greber-Platzer S, Schatzmann-Turhani D, Cairns N, Balcz B, Lubec G (1999b) Expression of the transcription factor ETS2 in brains of patients with Down Syndrome-evidence against the overexpression-gene dosage hypothesis. J Neural Transm 57: 270–281

    Google Scholar 

  • Gulesserian T, Engidawork E, Fountoulakis M, Lubec G (2001a) Antioxidant proteins in fetal brain: superoxide dismutase-1 (SOD1) protein is not overexpressed in fetal Down syndrome. J Neural Transm 61: 71–84

    Google Scholar 

  • Gulesserian T, Seidl R, Hardmeier R, Cairns N, Lubec G (2001b) Superoxide dismutase SOD1, encoded by chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J Invest Med 49: 41–46

    Article  CAS  Google Scholar 

  • Hall B (1965) Delayed ontogenesis in human trisomy syndromes. Hereditas (Lund) 52: 334–344

    Article  CAS  Google Scholar 

  • Holtzman DM, Bayney RM, Li Y, Khosrovi H, Berger CN, Epstein CJ, Mobley WC (1992) Dysregulation of gene expression in mouse trisomy 16, an animal model of Down syndrome. EMBO J 11: 619–627

    PubMed  CAS  Google Scholar 

  • Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640–642

    Article  PubMed  CAS  Google Scholar 

  • Keiner MJ, Bagnell R (1990) Alteration of growth rate and fibronectin by imbalances in superoxide dismutase and glutathione peroxidase activity. Biol Reactive Intermediates IV: 305–309

    Google Scholar 

  • Keiner MJ, Bagnell R, Montoya M, Estes L, Uglik SF, Cerutti P (1995) Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Rad Biol Med 18: 497–506

    Article  Google Scholar 

  • Kola I, Cristiano F, de Haan JB, Sumarsono S, Thomas R, Corrick C, Tymms M (1993) Genes, embryogenesis and Down syndrome. In: Moeloek F, Affandi B, Trounson AO (eds) Advances in human reproduction, vol 38. Parthenon Publishing Group, pp 309–320

    Google Scholar 

  • Lemieux N, Malfoy B, Forrest GL (1993) Human carbonyl reductase (CBR) localized to band 21q22.1 by high-resolution fluorescence in situ hybridization displays gene dosage effects in trisomy 21 cells. Genomics 15: 169–172

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Esiri MM (1989) The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s Syndrome. J Neurol Sci 89: 169179

    Google Scholar 

  • Meyer M, Schreck R, Baeuerle PA (1993) H2O2 and antioxidants have opposite effects on activation of NF-,B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12: 2005–2015

    PubMed  CAS  Google Scholar 

  • Minc-Golomb D, Knobler H, Groner Y (1991) Gene dosage of CuZnSOD and Down’s syndrome• diminished prostaglandin synthesis in human trisomy 21, transfected cells and transgenic mice. EMBO J 10: 2119–2124

    PubMed  CAS  Google Scholar 

  • Mirochnitchenko O, Inouye M (1996) Effect of overexpression of human Cu,Zn superoxide dismutase in transgenic mice on macrophage functions. J Immunol 156: 1578–1586

    Google Scholar 

  • Nabarra B, Casanova M, Paris D, Nicole A, Toyama K, Sinet PM, Ceballos I, London J (1996) Transgenic mice overexpressing the human Cu/Zn-SOD gene: ultrastructural studies of a premature thymic involution model of Down’s syndrome (Trisomy 21). Lab Invest 74: 67–626

    Google Scholar 

  • Neve J, Sinet PM, Molle L, Nicole A (1983) Selenium, zinc and copper levels in Down’s syndrome (trisomy 21): blood levels and relations with glutathione peroxidase and superoxide dismutase. Clin Chim Acta 133: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Neve RL, Finch EA, Dawes LR (1988) Expression of the Alzheimer amyloid precursor gene transcript in the human brain. Neuron 1: 669–677

    Article  PubMed  CAS  Google Scholar 

  • Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S, Dagna-Bricarelli F, Piombo G, Perry G, Smith M, Traverso N, Tabaton M (1998) Early glycoxidation damage in brains from Down’s syndrome. Biochem Biophys Res Commun 243: 849–851

    Article  PubMed  CAS  Google Scholar 

  • Pallister C, Jung SS, Shaw I, Nalbantoglu J, Gauthier S, Cashman NR (1997) Lymphocyte content of amyloid precursor protein is increased in Down’s syndrome and aging. Neurobiol Aging 18: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Pastor M-C, Sierra C, Dolade M, Navarro E, Brandi N, Cabre E, Mira A, Seres A (1998) Antioxidant enzymes and fatty acid status in erythrocytes of Down’s syndrome patients. Clin Chem 44: 924–929

    PubMed  CAS  Google Scholar 

  • Patterson DH (1987) The causes of Down Syndrome. Sci Am 257: 42–49

    Article  Google Scholar 

  • Pritchard MA, Kola I (1999) The “gene dosage effect” hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome. J Neural Transm 57: 293303

    Google Scholar 

  • Rehder H (1981) Pathology of trisomy 21, with particular reference to persistent common atrioventricular canal of the heart. In: Burgio GR, Fraccaro M, Tiepolo L, Wolf U (eds) Trisomy 21. An International Symposium. Springer, Berlin Heidelberg New York Tokyo, pp 57–73

    Google Scholar 

  • Rudolf AM (1984) Oxygenation in the fetus and neonate — a perspective. Semin Perinatol 8: 158–167

    Google Scholar 

  • Schwab M, Niemeyer C, Schwarzer U (1998) Down syndrome, transient myeloprolifera-tive disorder, and infantile liver fibrosis. Med Pediatr Oncol 31: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BL (1994) The environmental basis of the Down syndrome phenotype. Dev Med Child Neurol 36: 84–90

    Article  PubMed  CAS  Google Scholar 

  • Sherman L, Levanon D, Lieman-Hurwitz J, Dafni N, Groner Y (1984) Human Cu/Zn superoxide dismutase gene: molecular characterization of its two mRNA species. Nucl Acids Res 12: 9349–9365

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1956) In: Non-parametric statistics for the behavioural sciences. International Student edition. McGraw-Hill Kogakusha LTD, Tokyo, Japan

    Google Scholar 

  • Sies H, de Groot H (1992) Role of reactive oxygen species in cell toxicology. Toxicol Lett 64–65: 547–551

    Article  Google Scholar 

  • Sinet PM, Michelson AM, Bazin A, Lejeune J, Jerome H (1975a) Superoxide dismutases activities of blood platelets in trisomy 21. Biochem Biophys Res Commun 67: 904–909

    Article  PubMed  CAS  Google Scholar 

  • Sinet PM, Michelson AM, Bazin A, Lejeune J, Jerome H (1975b) Increase in glutathione peroxidase activity in erythrocytes from trisomy 21 subjects. Biochem Biophys Res Commun 67: 910–915

    Article  PubMed  CAS  Google Scholar 

  • Stefani I, Galt J, Palmer A, Affara N, Ferguson-Smith M, Nevin NC (1988) Expression of chromosome 21 specific sequences in normal and Down’s syndrome tissues. Nucl Acids Res 16: 2885–2896

    Article  PubMed  CAS  Google Scholar 

  • Sumarsono SH, Wilson TJ, Tymms MJ, Venter DJ, Corrick CM, Kola R, Lahoud MH, Papas TS, Seth A, Kola I (1996) Down’s syndrome-like skeletal abnormalities in Ets2 transgenic mice. Nature 379: 534–537

    Article  PubMed  CAS  Google Scholar 

  • Tam CF, Walford RL (1980) Alteration in cyclic nucleotides and cyclase-specific activities in T lymphocytes of aging normal humans and patients with Down’s syndrome. J Immunol 125: 1665–1670

    PubMed  CAS  Google Scholar 

  • Tan YH, Tischfield J, Ruddle FH (1973) The linkage of genes for the human interferon induced antiviral protein and indophenol oxidase-B traits to chromosome G-21. J Exp Med 137: 317–330

    Article  PubMed  CAS  Google Scholar 

  • Wadhera S, Millar WT (1994) Second trimester abortions: trends and medical complications. Health Reports 6: 441–454

    PubMed  CAS  Google Scholar 

  • White BA, Bancoft FC (1982) Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem 257: 8569–8572

    Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s Syndrome. Ann Neurol 17: 278–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

de Haan, J.B., Susil, B., Pritchard, M., Kola, I. (2003). An altered antioxidant balance occurs in Down syndrome fetal organs: Implications for the “gene dosage effect” hypothesis. In: Lubec, G. (eds) Advances in Down Syndrome Research. Journal of Neural Transmission Supplement 67, vol 67. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6721-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6721-2_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-40776-9

  • Online ISBN: 978-3-7091-6721-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics