Skip to main content

Transcription factor REST dependent proteins are comparable between Down Syndrome and control brains: challenging a hypothesis

  • Chapter
Book cover Advances in Down Syndrome Research

Part of the book series: Journal of Neural Transmission Supplement 67 ((NEURAL SUPPL,volume 67))

Summary

Impairment of the RE-1-silencing transcription factor (REST) and REST — dependent genes in Down Syndrome (DS) neuronal progenitor cells and neurospheres has been published recently. As dysregulation of this system has been shown at the RNA level and considering the long and unpredictable way from RNA to proteins, and as it is the proteins that do the function in brain, we decided to test this hypothesis at the protein level.

Cortex of brains of patients with Down Syndrome at the early second trimester were used. REST — dependent structures as synapsin I, brain derived neurotrophic factor BDNF and neuronal growth-associated protein SCG10 were determined at the protein level using immunoblotting.

Proteins were comparably expressed in fetal Down syndrome and control brains. Even when normalized versus housekeeping genes (glyceraldehyde-6-phosphate-dehydrogenease) and a marker for neuronal density (neuron — specific enolase) DS results were resembling controls. Therefore, we cannot confirm the REST-hypothesis by our studies in the 18/19th week of gestation at the protein level in brain and taking into account that the hypothesis was based upon studies in progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonsson B, Kassel DB, Di Paolo G, Lutjens R, Riederer BM, Grenningloh G (1998) Identification of in vitro phosphorylation sites in the growth cone protein SCG10. Effect of phosphorylation site mutants on microtubule-destabilizing activity. J Biol Chem 273: 8439–8446

    Article  PubMed  CAS  Google Scholar 

  • Arai Y, Ijuin T, Takenawa T, Becker LE, Takashima S (2002) Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev 24: 67–72

    Article  PubMed  Google Scholar 

  • Bahn S, Mimmack M, Ryan M, Caldwell M, Jauniaux E, Starkey M, Svendsen C, Emson P (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359: 310–315

    Article  PubMed  CAS  Google Scholar 

  • Bai G, Norton D, Prenger M, Kusiak J (1998) Single-stranded DNA-binding proteins and neuron-restrictive silencer factor participate in cell-specific transcriptional control of the NMDAR1 gene. J Biol Chem 273: 1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Becker L, Armstrong D, Chan F (1986) Dendritic atrophy in children with Down Syndrome. Ann Neurol 20: 520–526

    Article  PubMed  CAS  Google Scholar 

  • Becker L, Mito T, Takashima S, Onodera K (1991) Growth and development of the brain in Down syndrome. Prog Clin Biol Res 373: 133–152

    PubMed  CAS  Google Scholar 

  • Bessis A, Champtiaux N, Chatelin L, Changeux JP (1997) The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc Natl Acad Sci USA 94: 5906–5911

    Article  PubMed  CAS  Google Scholar 

  • Brooksbank B, Walker D, Balasz R, Jorgensen OS (1989) Neuronal maturation in the foetal brain in Down’s syndrome. Early Hum Dev 18: 237–246

    Article  PubMed  CAS  Google Scholar 

  • Chen ZF, Paquette A, Anderson D (1998) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet 20: 136–142

    Article  PubMed  CAS  Google Scholar 

  • Cheon MS, Shim KS, Kim SH, Hara A, Lubec G (2003) Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: challenging the gene dosage effect hypothesis, part IV. Amino Acids 25: 41–47

    PubMed  CAS  Google Scholar 

  • Chin LS, Li L, Ferreira A, Kosik K, Greengard P (1995) Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci USA 92: 9230–9234

    Article  PubMed  CAS  Google Scholar 

  • Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral J, Zheng Y, Boutros M, Altshuller Y, Frohman M, Kraner S, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80: 949–957

    Article  PubMed  CAS  Google Scholar 

  • Cowan J, Powers J, Tischler A (1996) Assignment of the REST gene to 4q12 by fluorescence in situ hybridization. Genomics 34: 260–262

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, Lutjens R, Osen-Sand A, Sobel A, Catsicas S, Grenningloh G (1997) Differential distribution of stathmin and SCG10 in developing neurons in culture. J Neurosci Res 50: 1000–1009

    Article  PubMed  Google Scholar 

  • Engidawork E, Lubec G (2001) Protein expression in Down syndrome brain. Amino Acids 21: 331–361

    Article  PubMed  CAS  Google Scholar 

  • Engidawork E, Lubec G (2003) Molecular changes in fetal Down Syndrome brain. J Neurochem 84: 895–904

    Article  PubMed  CAS  Google Scholar 

  • Epstein C (1995) The metabolic and molecular bases of inherited disease. In: Scriver SR, Beaudet AL, Sly WS, Valle D (eds) Down Syndrome (Trisomy 21 ). McGraw Hill, New York, pp 749–794

    Google Scholar 

  • Ferreira A, Rapoport M (2002) The synapsins: beyond the regulation of neurotransmitter release. Cell Mol Life Sci 59: 589–595

    Article  PubMed  CAS  Google Scholar 

  • Gulesserian T, Kim SH, Fountoulakis M, Lubec G (2002) Aberrant expression of centractin and capping proteins, integral constituents of the dynactin complex, in fetal Down syndrome brain. Biochem Biophys Res Commun 291: 62–67

    Article  PubMed  CAS  Google Scholar 

  • Kallunki P, Edelman G, Jones F (1998) The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc Natl Acad Sci USA 95: 3233–3238

    Article  PubMed  CAS  Google Scholar 

  • Kish S, Karlinsky H, Becker L, Gilbert J, Rebbetoy M, Chang LJ, DiStefano L, Hornykiewicz O (1989) Down’s syndrome individuals begin life with normal levels of brain cholinergic markers. J Neurochem 52: 1183–1187

    Article  PubMed  CAS  Google Scholar 

  • Kraner SD, Chong JA, Tsay HJ, Mandel G (1992) Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Li L, Suzuki T, Mori N, Greengard P (1993) Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci USA 90: 1460–1464

    Article  PubMed  CAS  Google Scholar 

  • Lubec B, Yoo BC, Dierssen M, Balic N, Lubec G (2001a) Down syndrome patients start early prenatal life with normal cholinergic, monoaminergic and serotoninergic innervation. J Neural Transm [Suppl] 61: 303–310

    Google Scholar 

  • Lubec B, Weitzdoerfer R, Fountoulakis M (2001b) Manifold reduction of moesin in fetal Down syndrome brain. Biochem Biophys Res Commun 286: 1191–1194

    Article  PubMed  CAS  Google Scholar 

  • Lutjens R, Igarashi M, Pellier V, Blasey H, Di Paolo G, Ruchti E, Pfulg C, Staple JK, Catsicas S, Grenningloh G (2000) Localization and targeting of SCG10 to the trans-Golgi apparatus and growth cone vesicles. Eur J Neurosci 12: 2224–2234

    Article  PubMed  CAS  Google Scholar 

  • Mason M, Lieberman A, Grenningloh G, Anderson P (2002) Transcriptional upregulation of SCG10 and CAP-23 is correlated with regeneration of the axons of peripheral and central neurons in vivo. Mol Cell Neurosci 20: 595

    Article  PubMed  CAS  Google Scholar 

  • Mieda M, Haga T, Saffen D (1997) Expression of the rat m4 muscarinic acetylcholine receptor gene is regulated by the neuron-restrictive silencer element/repressor element 1. J Biol Chem 272: 5854–5860

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Schoenherr C, Vandenbergh D, Anderson D (1992) A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Naruse Y, Aoki T, Kojima T, Mori N (1999) Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci USA 96: 13691–13696

    Article  PubMed  CAS  Google Scholar 

  • Okazaki T, Wang H, Masliah E, Cao M, Johnson S, Sundsmo M, Saitoh T, Mori N (1995) SCG10, a neuron-specific growth-associated protein in Alzheimer’s disease. Neurobiol Aging 16: 883–894

    Article  PubMed  CAS  Google Scholar 

  • Palm K, Belluardo N, Metsis M, Timmusk T (1998) Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. J Neurosci 18: 1280–1296

    PubMed  CAS  Google Scholar 

  • Paquette AJ, Perez SE, Anderson DJ (2000) Constitutive expression of the neuron-restrictive silencer factor ( NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo. Proc Natl Acad Sci USA 97: 12318–12323

    Article  PubMed  CAS  Google Scholar 

  • Pellier-Monnin V, Astic L, Bichet S, Riederer BM, Grenningloh G (2001) Expression of SCG10 and stathmin proteins in the rat olfactory system during development and axonal regeneration. J Comp Neurol 433: 239–254

    Article  PubMed  CAS  Google Scholar 

  • Riederer BM, Pellier V, Antonsson B, Di Paolo G, Stimpson SA, Lutjens R, Catsicas S, Grenningloh G (1997) Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc Natl Acad Sci USA 94: 741–745

    Article  PubMed  CAS  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267: 1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Schoenherr CJ, Paquette AJ, Anderson DJ (1996) Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA 93: 9881–9886

    Article  PubMed  CAS  Google Scholar 

  • Schoch S, Cibelli G, Thiel G (1996) Neuron-specific gene expression of synapsin I. Major role of a negative regulatory mechanism. J Biol Chem 271: 3317–3323

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM (1999) Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol 9: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Seth KA, Majzoub JA (2001) Repressor element silencing transcription factor/neuronrestrictive silencing factor ( REST/NRSF) can act as an enhancer as well as a repressor of corticotropin-releasing hormone gene transcription. J Biol Chem 276: 13917–13923

    PubMed  CAS  Google Scholar 

  • Sugiura Y, Mori N (1995) SCG10 expresses growth-associated manner in developing rat brain, but shows a different pattern to p19/stathmin or GAP-43. Brain Res Dev Brain Res 90: 73–91

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, Lietz M, Leichter M (1999) Regulation of neuronal gene expression. Naturwissenschaften 86: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Timmusk T, Palm K, Lendahl U, Metsis M (1999) Brain-derived neurotrophic factor expression in vivo is under the control of neuron-restrictive silencer element. J Biol Chem 274: 1078–1084

    PubMed  CAS  Google Scholar 

  • Weitzdoerfer R, Fountoulakis M, Lubec G (2002) Reduction of actin-related protein complex 2/3 in fetal Down syndrome brain. Biochem Biophys Res Commun 293: 836–841

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17: 278–282

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski K, Kida E (1994) Abnormal neurogenesis and synaptogenesis in Down Syndrome brain. Dev Brain Dysfunct 7: 289–301

    Google Scholar 

  • Wood IC, Roopra A, Buckley NJ (1996) Neural specific expression of the m4 muscarinic acetylcholine receptor gene is mediated by a RE1/NRSE-type silencing element. J Biol Chem 271: 14221–14225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Sohn, S.Y., Weitzdoerfer, R., Mori, N., Lubec, G. (2003). Transcription factor REST dependent proteins are comparable between Down Syndrome and control brains: challenging a hypothesis. In: Lubec, G. (eds) Advances in Down Syndrome Research. Journal of Neural Transmission Supplement 67, vol 67. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6721-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6721-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-40776-9

  • Online ISBN: 978-3-7091-6721-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics