Advertisement

A new mouse model for Down syndrome

  • Y. Kazuki
  • T. C. Schulz
  • T. Shinohara
  • M. Kadota
  • R. Nishigaki
  • T. Inoue
  • M. Kimura
  • Y. Kai
  • S. Abe
  • Y. Shirayoshi
  • M. Oshimura
Part of the Journal of Neural Transmission Supplement 67 book series (NEURAL SUPPL, volume 67)

Summary

Trisomy 21 (Ts21) is the most common live-born human aneuploidy and results in a constellation of features known as Down syndrome (DS). Ts21 is a frequent cause of congenital heart defects and the leading genetic cause of mental retardation. Although overexpression of a gene(s) or gene cluster on human chromosome 21 (Chr 21) or the genome imbalance by Ts21 has been suggested to play a key role in bringing about the diverse DS phenotypes, little is known about the molecular mechanisms underlying the various phenotypes associated with DS. Four approaches have been used to model DS to investigate the gene dosage effects of an extra copy of Chr 21 on various phenotypes; 1) Transgenic mice overexpressing a single gene from Chr 21, 2) YAC/BAC/PAC transgenic mice containing a single gene or genes on Chr 21, 3) Mice with intact/partial trisomy 16, a region with homology to human Chr 21 and 4) Human Chr 21 transchromosomal (Tc) mice.

Here we review our new model system for the study of DS using the Tc technology, including the biological effects of an additional Chr 21 in vivo and in vitro.

Keywords

Down Syndrome Chimeric Mouse Partial Trisomy Down Syndrome Patient Ts65Dn Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altafaj X, Dierssen M, Baamonde C, Marti E, Visa J, Guimera J, Oset M, Gonzalez JR, Florez J, Fillat C, Estivill X (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet 10: 1915–1923PubMedCrossRefGoogle Scholar
  2. Baker RK, Lyons GE (1996) Embryonic stem cells and in vitro muscle development. Curr Top Dev Biol 33: 263–279PubMedCrossRefGoogle Scholar
  3. Bahn S, Mimmack M, Ryan M, Caldwell MA, Jauniaux E, Starkey M, Svendsen CN, Emson P (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359: 310–315PubMedCrossRefGoogle Scholar
  4. Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol Genet 22: 195–202CrossRefGoogle Scholar
  5. Bustin M, Alfonso PJ, Pash JM, Ward JM, Gearhart JD, Reeves RH (1995) Characterization of transgenic mice with an increased content of chromosomal protein HMG-14 in their chromatin. DNA Cell Biol 14: 997–1005PubMedCrossRefGoogle Scholar
  6. Chrast R, Scott HS, Chen H, Kudoh J, Rossier C, Minoshima S, Wang Y, Shimizu N, Antonarakis SE (1997) Cloning of two human homologs of the Drosophila single-minded gene SIM1 on chromosome 6q and SIM2 on 21q within the Down syndrome chromosomal region. Genome Res 7: 615–624PubMedGoogle Scholar
  7. Chrast R, Scott HS, Madani R, Huber L, Wolfer DP, Prinz M, Aguzzi A, Lipp HP, Antonarakis SE (2000) Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Hum Mol Genet 9: 1853–1864PubMedCrossRefGoogle Scholar
  8. Davisson MT, Lalley PA, Peters J, Doolittle DP, Hillyard AL, Searle AG (1990) Report of the comparative subcommittee for human and mouse homologies. Cytogenet Cell Genet 55: 434–456PubMedCrossRefGoogle Scholar
  9. Dierssen M, Fillat C, Crnic L, Arbone’s M, Flo’rez J, Xavier Estivill (2001) Murine models for Down syndrome. Physiol Behav 73: 859–871PubMedCrossRefGoogle Scholar
  10. Elson A, Levanon D, Weiss Y, Groner Y (1994) Overexpression of liver-type phosphofructokinase (PFKL) in transgenic-PFKL mice: implication for gene dosage in trisomy 21. Biochem J 299: 409–415PubMedGoogle Scholar
  11. Ema M, IkegamiS, Hosoya T, Mimura J, Ohtani H, Nakao K, Inokuchi K, Katsuki M, Fujii-Kuriyama Y (1999) Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: an animal model of Down’s syndrome. Hum Mol Genet 8: 1409–1415PubMedCrossRefGoogle Scholar
  12. Epstein CJ (1986) Consequences of chromosome imbalance: principals, mechanisms and models. Cambridge University Press, New YorkGoogle Scholar
  13. Epstein CJ, Cox DR, Epstein LB (1985) Mouse trisomy 16: an animal model of human trisomy 21 ( Down syndrome ). Ann NY Acad Sci 450: 157–168PubMedCrossRefGoogle Scholar
  14. Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, Rotman G, Bry C, Groner Y (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci USA 84: 8044–8048PubMedCrossRefGoogle Scholar
  15. Gerlai R, Friend W, Becker L, O’Hanlon D, Marks A, Roder J (1993) Female transgenic mice carrying multiple copies of the human gene for S100 beta are hyperactive. Behav Brain Res 31: 51–59CrossRefGoogle Scholar
  16. Gitton Y, Dahmane N, Baik S, Ruiz i Altaba A, Neidhardt L, Scholze M, Herrmann BG, Kahlem P, Benkahla A, Schrinner S, Yildirimman R, Herwig R, Lehrach H, Yaspo ML (2002) A gene expression map of human chromosome 21 orthologues in the mouse. Nature 420: 586–590PubMedCrossRefGoogle Scholar
  17. Gropp A, Kolbus U, Giers D (1975) Systematic approach to the study of trisomy in the mouse. II. Cytogenet Cell Genet 14: 42–62PubMedCrossRefGoogle Scholar
  18. Gruber PJ, Kubalak SW, Chien KR (1998) Downregulation of atrial markers during cardiac chamber morphogenesis is irreversible in murine embryos. Development 125: 4427–4438PubMedGoogle Scholar
  19. Hagendorff A, Schumacher B, Kirchhoff S, Luderitz B, Willecke K (1999) Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation 99: 1508–1515PubMedGoogle Scholar
  20. Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK et al (2000) DNA sequence of human chromosome 21. Nature 405: 311–319PubMedCrossRefGoogle Scholar
  21. Hernandez D, Mee PJ, Martin JE, Tybulewicz VL, Fisher EM (1999) Transchromosomal mouse embryonic stem cell lines and chimeric mice that contain freely segregating segments of human chromosome 21. Hum Mol Genet 8: 923–933PubMedCrossRefGoogle Scholar
  22. Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, pp 379–380Google Scholar
  23. Inoue T, Shinohara T, Takehara S, Inoue J, Kamino H, Kugoh H, Oshimura M (2000) Specific impairment of cardiogenesis in mouse ES cells containing a human chromosome 21. Biochem Biophys Res Commun 24: 219–224CrossRefGoogle Scholar
  24. Insausti AM, Megias M, Crespo D, Cruz-Orive LM, Dierssen M, Vallina IF, Insausti R, Florez J, Vallina TF, Vallina TF (1998) Hippocampal volume and neuronal number in Ts65Dn mice: a murine model of Down syndrome. Neurosci Lett 253: 175–178PubMedCrossRefGoogle Scholar
  25. Kadota M, Shirayoshi Y, Oshimura M (2002) Elevated apoptosis in pre-mature neurons differentiated from mouse ES cells containing a single human chromosome 21. Biochem Biophys Res Commun 299: 599–605PubMedCrossRefGoogle Scholar
  26. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 31–40PubMedCrossRefGoogle Scholar
  27. Kazuki Y, Shinohara T, Tomizuka K, Katoh M, Ohguma A, Ishida I, Oshimura M (2001) Germline transmission of a transferred human chromosome 21 fragment in transchromosomal mice. J Hum Genet 46: 600–603PubMedCrossRefGoogle Scholar
  28. Kuroiwa Y, Tomizuka K, Shinohara T, Kazuki Y, Yoshida H, Ohguma A, Yamamoto T, Tanaka S, Oshimura M, Ishida I (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat Biotechnol 18: 1086–1090PubMedCrossRefGoogle Scholar
  29. Kola I, Hertzog PJ (1997) Animal models in the study of the biological function of genes on human chromosome 21 and their role in the pathophysiology of Down syndrome. Hum Mol Genet 6: 1713–1727PubMedCrossRefGoogle Scholar
  30. Korenberg JR, Chen XN, Schipper R, Sun Z, Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P, Disteche C et al (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance Proc Natl Acad Sci USA 24: 4997–5001CrossRefGoogle Scholar
  31. Kubalak SW, Miller-Hance WC, O’Brien TX, Dyson E, Chien KR (1994) Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 269: 16961–16970PubMedGoogle Scholar
  32. Lamb BT, Call LM, Slunt HH, Bardel KA, Lawler AM, Eckman CB, Younkin SG, Holtz G, Wagner SL, Price DL, Sisodia SS, Gearhart JD (1997) Altered metabolism of familial Alzheimer’s disease-linked amyloid precursor protein variants in yeast artificial chromosome transgenic mice. Hum Mol Genet 6: 1535–1541PubMedCrossRefGoogle Scholar
  33. McCormick MK, Schinzel A, Petersen MB, Stetten G, Driscoll DJ, Cantu ES, Tranebjaerg L, Mikkelsen M, Watkins PC, Antonarakis SE (1989) Molecular genetic approach to the characterization of the “Down syndrome region” of chromosome 21. Genomics 5: 325–331PubMedCrossRefGoogle Scholar
  34. Mjaatvedt AE, Cabin DE, Cole SE, Long LJ, Breitwieser GE, Reeves RH (1995) Assessment of a mutation in the H5 domain of Girk2 as a candidate for the weaver mutation. Genome Res 5: 453–463PubMedCrossRefGoogle Scholar
  35. Nishigaki R, Shinohara T, Toda T, Omori A, Ichinose S, Itoh M, Shirayoshi Y, Kurimasa A, Oshimura M (2002) An extra human chromosome 21 reduces mlc-2a expression in chimeric mice and Down syndrome. Biochem Biophys Res Commun 295: 112–118PubMedCrossRefGoogle Scholar
  36. Oyamada Y, Komatsu K, Kimura H, Mori M, Oyamada M (1996) Differential regulation of gap junction protein (connexin) genes during cardiomyocytic differentiation of mouse embryonic stem cells in vitro. Exp Cell Res 229: 318–326PubMedCrossRefGoogle Scholar
  37. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47: 379–391PubMedCrossRefGoogle Scholar
  38. Rahmani Z, Blouin JL, Creau-Goldberg N, Watkins PC, Mattei JF, Poissonnier M, Prieur M, Chettouh Z, Nicole A, Aurias A et al (1989) Critical role of the D21S55 region on chromosome 21 in the pathogenesis of Down syndrome. Proc Natl Acad Sci USA 86: 5958–5962PubMedCrossRefGoogle Scholar
  39. Ramirez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378: 720–724PubMedCrossRefGoogle Scholar
  40. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267: 1831–1834Google Scholar
  41. Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, Schmidt C, Bronson RT, Davisson MT (1995) A mouse model for Down Syndrome exhibits learning and behaviour deficits. Nat Genet 11: 177–184PubMedCrossRefGoogle Scholar
  42. Reeves RH, Baxter LL, Richtsmeier JT (2001) Too much of a good thing: mechanisms of gene action in Down syndrome. Trends Genet 17: 79–84CrossRefGoogle Scholar
  43. Reymond A, Marigo V, Yaylaoglu MB, Leoni A, Ucla C, Scamuffa N, Caccioppoli C, Dermitzakis ET, Lyle R, Banfi S, Eichele G, Antonarakis SE, Ballabio A (2002) A human chromosome 21 gene expression atlas in the mouse. Nature 420: 582–586PubMedCrossRefGoogle Scholar
  44. Richtsmeier JT, Baxter LL, Reeves RH (2000) Parallels of craniofacial maldevelopment in Down Syndrome and Ts65Dn mice. Dev Dyn 217: 137–145PubMedCrossRefGoogle Scholar
  45. Sago H, Carlson EJ, Smith DJ, Kilbridge J, Rubin EM, Mobley WC, Epstein CJ, Huang TT (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA 95: 6256–6261PubMedCrossRefGoogle Scholar
  46. Sago H, Carlson EJ, Smith DJ, Rubin EM, Crnic LS, Huang TT, Epstein CJ (2000) Genetic dissection of region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatr Res 48: 606–613PubMedCrossRefGoogle Scholar
  47. Sandin J, Georgieva J, Schott PA, Ogren SO, Terenius L (1997) Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur J Neurosci 9: 194–197PubMedCrossRefGoogle Scholar
  48. Shinohara T, Tomizuka K, Miyabara S, Takehara S, Kazuki Y, Inoue J, Katoh M, Nakane H, Iino A, Ohguma A, Ikegami S, Inokuchi K, Ishida I, Reeves RH, Oshimura M (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Hum Mol Genet 15: 1163–1175CrossRefGoogle Scholar
  49. Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts P (1995) A site-directed chromosomal translocation induced in embryonic stem cells by CreloxP recombination. Nat Genet 9: 376–385PubMedCrossRefGoogle Scholar
  50. Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, Watabe AM, O’Dell TJ, Fung J, Weier HU, Cheng JF, Rubin EM (1997) Functional screening of 2Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nature Genet 16: 28–36PubMedCrossRefGoogle Scholar
  51. Sumarsono SH, Wilson TJ, Tymms MJ, Venter DJ, Corrick CM, Kola R, Lahoud MH, Papas TS, Seth A, Kola I (1996) Down’s syndrome-like skeletal abnormalities in Ets2 transgenic mice. Nature 379: 534–537PubMedCrossRefGoogle Scholar
  52. Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, Hayasaka M, Hanaoka K, Oshimura M, Ishida I (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16: 133–143PubMedCrossRefGoogle Scholar
  53. Uchida M, Tokunaga T, Aizawa S, Niwa K, Imai H (1995) Isolation and nature of mouse embryonic stem cell line efficiently producing female germ-line chimeras. Anim Sci Technol (Jpn) 66: 361–367Google Scholar
  54. Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17: 278–282PubMedCrossRefGoogle Scholar
  55. Wisniewski KE, Laure-Kamionowska M, Connel F, Wen GY (1986) Neuronal density and synaptogenesis in the postnatal stage of brain maturation in Down syndrome. In: Epstein CJ (ed) The neurobiology of Down syndrome. Raven Press, New York, pp 29–45Google Scholar
  56. Xu C, Liguori G, Adamson ED, Persico MG (1998) Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1. Dev Biol 196: 237–247PubMedCrossRefGoogle Scholar
  57. Ziai MR, Sangameswaran L, Hempstead JL, Danho W, Morgan JI (1988) An immunochemical analysis of the distribution of a brain-specific polypeptide, PEP-19. J Neurochem 51: 1771–1776PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Y. Kazuki
    • 1
    • 2
  • T. C. Schulz
    • 2
    • 3
  • T. Shinohara
    • 2
  • M. Kadota
    • 2
  • R. Nishigaki
    • 2
  • T. Inoue
    • 4
  • M. Kimura
    • 2
  • Y. Kai
    • 1
  • S. Abe
    • 2
  • Y. Shirayoshi
    • 2
  • M. Oshimura
    • 1
    • 2
    • 5
  1. 1.Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of MedicineTottori UniversityTottoriJapan
  2. 2.Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of MedicineTottori UniversityTottoriJapan
  3. 3.BresaGenUniversity of GeorgiaAthensUSA
  4. 4.Department of Human Genome Science, Graduate School of MedicineTottori UniversityTottoriJapan
  5. 5.Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of MedicineTottori UniversityYonago, TottoriJapan

Personalised recommendations