Skip to main content

Mechanisms of flagellar propulsion

A biologist’s view of the relation between structure, motion, and fluid mechanics

  • Chapter
The Cytoskeleton of Flagellate and Ciliate Protists
  • 100 Accesses

Summary

Flagellar propulsion takes place in the viscosity-dominated realm of low Reynolds number fluid dynamics. Volumes of fluid are carried in a capture zone around the moving regions of the flagellum, and the flagellar motion achieves propulsion because some of that water is shed from the capture zone, either from the flagellar tip in typical flagellar motion or to the side reached at the end of the effective stroke in the case of ciliary motion. Helical flagellar motion is in principle more efficient than planar beating, and the rotation caused by the former introduces complications in propulsion that may be advantageous, e.g., in Euglena, or disadvantageous, e.g., in a fixed cell. The presence of a surface near to the moving organelle restricts the fluid motion, but this effect enhances ciliary propulsion. There is a great variety of beat patterns, functionally adapted hydrodynamically or in other ways for locomotion, feeding, and other more restricted roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baba SA, Hiramoto Y (1970) A quantitative analysis of ciliary movement by means of high speed microcinematography. J Exp Biol 52: 675–690

    Google Scholar 

  • Blake JR, Sleigh MA (1974) Mechanics of ciliary locomotion. Biol Rev 49: 85–125

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood RA (1990) Gliding motility and flagellar glycoprotein dynamics in Chlamydomonas. In: Bloodgood RA (ed) Ciliary and flagellar membranes. Plenum, New York, pp 91–128

    Chapter  Google Scholar 

  • Brokaw CJ (1965) Non-sinusoidal bending waves of sperm flagella. J Exp Biol 43: 155–169

    PubMed  CAS  Google Scholar 

  • Chwang AT, Wu TY (1971) A note on the helical movement of micro-organisms. Proc Roy Soc Lond [Biol] 178: 327–346

    Article  CAS  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa. Science Tech, Madison, Wisconsin/Springer, Berlin Heidelberg, New York Tokyo

    Google Scholar 

  • Gaines G, Taylor FJR (1985) Form and function of the dinoflagellate transverse flagellum. J Protozool 32: 290–296

    Google Scholar 

  • Gray J, Hancock GJ (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32: 802–814

    Google Scholar 

  • Hancock GJ (1953) The self-propulsion of microscopic organisms through liquids. Proc Roy Soc Lond [A] 217: 96–121

    Article  Google Scholar 

  • Higdon JJL (1979 a) A hydrodynamic analysis of flagellar propulsion. J Fluid Mech 90: 685–711

    Article  Google Scholar 

  • Higdon JJL (1979 b) The generation of feeding currents by flagellar motions. J Fluid Mech 94: 305–330

    Article  Google Scholar 

  • Higdon JJL (1979 c) The hydrodynamics of flagellar propulsion: helical waves. J Fluid Mech 94: 331–351

    Article  Google Scholar 

  • Holwill MEJ (1966) Physical aspects of flagellar movement. Physiol Rev 46: 695–785

    Google Scholar 

  • Holwill MEJ (1974) Hydrodynamic aspects of ciliary and flagellar movement. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London, pp 143–175

    Google Scholar 

  • Holwill MEJ Sleigh MA (1967) Propulsion by hispid flagella. J Exp Biol 47: 267–276

    PubMed  CAS  Google Scholar 

  • Lapage G (1925) Notes on the choanoflagellate Codosiga Ehrbg. Q J Microsc Sci 69: 471–508

    Google Scholar 

  • Lighthill J (1976) Flagellar hydrodynamics. SIAM Rev 18: 161–230

    Article  Google Scholar 

  • Machemer H, Sugino K (1986) Parameters of the ciliary cycle under membrane voltage control. Cell Motil Cytoskeleton 6: 89–95

    Article  Google Scholar 

  • Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33: 543–571

    Article  PubMed  CAS  Google Scholar 

  • Roberts AM (1981) Hydrodynamics of protozoan swimming. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol 4, 2nd edn. Academic Press, New York, pp 6–66

    Google Scholar 

  • Satir P, Sleigh MA (1990) The physiology of cilia and mucociliary interactions. Annu Rev Physiol 52: 137–155

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AH (1961) Shape and flow: the fluid dynamics of drag. Doubleday, Garden City, NY

    Google Scholar 

  • Silvester NR, Holwill MEJ (1972) An analysis of hypothetical flagellar waveforms. J Theor Biol 35: 505–523

    Article  PubMed  CAS  Google Scholar 

  • Sleigh MA (1974) Patterns of movement of cilia and flagella. In: Sleigh MA (ed) Cilia and flagella. Academic Press, London, pp 79–92

    Google Scholar 

  • Sleigh MA (1981) Flagellar beat patterns and their possible evolution. BioSystems 14: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Sleigh MA (1989) Ciliary propulsion in protozoa. Sci Prog (Oxf) 73: 317–332

    Google Scholar 

  • Sleigh MA Aiello E (1972) The movement of water by cilia. Acta Protozool 11: 265–277

    Google Scholar 

  • Sleigh MA Barlow D (1976) Collection of food by Vorticella. Trans Am Microsc Soc 95: 482–486

    Article  Google Scholar 

  • Sleigh MA Barlow D (1982) How are different ciliary beat patterns produced? Symp Soc Exp Biol 35: 139–157

    PubMed  CAS  Google Scholar 

  • Sugino K, Naitoh Y (1982) Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295: 609–611

    Article  Google Scholar 

  • Taylor FJR (1987) The biology of dinoflagellates. Blackwell, Oxford

    Google Scholar 

  • Taylor GI (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc Roy Soc Lond [A] 211: 225–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Sleigh, M.A. (1991). Mechanisms of flagellar propulsion. In: The Cytoskeleton of Flagellate and Ciliate Protists. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6714-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6714-4_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7391-6

  • Online ISBN: 978-3-7091-6714-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics