Hardy Space Robust Design

  • Alexander Weinmann


In Fig. 31.1 a single-input single-output system is given. A robust controller K(s) should be designed to guarantee sufficient closed-loop performance even in the presence of plant uncertainties. The actual plant transfer function is G p = {1 + ΔN[u(t),t]}G where G denotes the nominal plant and ΔN[u(t), t] is a real-valued nonlinear time-varying function of the input signal u(t). The uncertainty ΔN is considered bounded by the sector gain γN
$$\Delta N\left[ {u(t),t} \right] \le \gamma N\left| {u(t)} \right|{\rm{ }}\forall u(t){\rm{ where }}\Delta N\left[ {0,t} \right] = 0{\rm{ }}\forall t$$
The nonlinearity is not essential in this chapter but the derivations can easily be extended to several types of nonlinear uncertainty.


Hardy Space Imaginary Axis Stability Margin Sensitivity Function Spectral Factorization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • Alexander Weinmann
    • 1
  1. 1.Department of Electrical EngineeringTechnical University ViennaAustria

Personalised recommendations