Skip to main content

Neurochemical bases of spasticity

  • Chapter
Neurosurgery for Spasticity
  • 95 Accesses

Abstract

The neurobiochemical substratum of spasticity is highly complex and remains poorly understood. However, it is possible to throw some light on it using data from functional neuroanatomy and pharmacological studies of antispastic drugs. In this chapter we will look at the neurobiochemistry of control exerted at the segmental (spinal) level, then at those exerted at the supraspinal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABA-B receptors to the same channels III hippocampus. Science 234:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Armand J (1982) The origins, course and terminations of corticospinal fibers in various mammals. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the spinal cord. Prog Brain Res 57:329–360

    Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spintal mechanisms of nociception. Physiol Rev 67:67–186

    PubMed  CAS  Google Scholar 

  • Chen DF, Bianchetti M, Wiesendanger M (1987) The adrenergic agonist tizanidine has differential effects on flexor reflexes of intact and spinalized rat. Neuroscience 23:641–647

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Quinlan JE (1985) Selective inhibition of responses of feline dorsal horn neurones to nixious cutaneous stimuli by tizanidine (DS 103–282) and noradrenaline: involvement of alpha 2-adrenoceptors. Neuroscience 16:673–682

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Bormann J, Sakmann B (1983) Activation of multiple-conductance stade chloride channels in spinal neurones by glycine and GABA. Nature 305:805–808

    Article  PubMed  CAS  Google Scholar 

  • Hamon H (1987) Les récepteurs GABA dans le système nerveux central. Aspects biochimiques et pharmacologiques. L’Encéphale 13:159–163

    PubMed  CAS  Google Scholar 

  • Henneman E, Mendell LM (1981) Functional organization of the motoneuron pool and its inputs. In: Brooks VB (ed) Handbook of physiology: the nervous system, vol 2. Motor control. American Physiological Society, Washington DC

    Google Scholar 

  • Howe JR, Wang JY, Yaksh TL (1983) Selective antagonism of the antinoceptive effect of intrathecally applied alpha-adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J Pharmacol Exp Ther 224:552–558

    PubMed  CAS  Google Scholar 

  • Jankowska E, Lundberg A (1981) Interneurons in the spinal cord. TINS 4:230–233

    Google Scholar 

  • Kuypers HGJM (1982) A new look at the organization of the motor system. In: Kuypers HGJM, Martin GF (eds) Anatomy of descending pathways to the spinal cord. Prog Brain Res 57:381–403

    Google Scholar 

  • Massion J (1984) Fonctions motrices. Encycl Med Chir Neurologie (17002 D10) 11:28 pages

    Google Scholar 

  • Ono H, Matsumoto K, Kato K, Miyamoto M, Mori T, Nakamura T, Oka J, Fukuda H (1986) Effects of tizanidine, a centrally acting muscle relaxant, on motor systems. Gen Pharmacol 17:137–142

    Article  PubMed  CAS  Google Scholar 

  • Roberts MHT (1984) 5 HT and antinociception. Neuropharmacology 23(12B):1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Strick PL (1984) Anatomical and physiological organization of the non primary motor cortex. TINS 7:442–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Ollat, H. (1991). Neurochemical bases of spasticity. In: Sindou, M.P., Abbott, I.R., Keravel, Y. (eds) Neurosurgery for Spasticity. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6708-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6708-3_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7388-6

  • Online ISBN: 978-3-7091-6708-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics