Neurochemical bases of spasticity

  • H. Ollat


The neurobiochemical substratum of spasticity is highly complex and remains poorly understood. However, it is possible to throw some light on it using data from functional neuroanatomy and pharmacological studies of antispastic drugs. In this chapter we will look at the neurobiochemistry of control exerted at the segmental (spinal) level, then at those exerted at the supraspinal levels.


Motor Neuron Primary Motor Cortex Motor Neuron Peripheral Afferents Renshaw Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABA-B receptors to the same channels III hippocampus. Science 234:1261–1265PubMedCrossRefGoogle Scholar
  2. Armand J (1982) The origins, course and terminations of corticospinal fibers in various mammals. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the spinal cord. Prog Brain Res 57:329–360Google Scholar
  3. Besson JM, Chaouch A (1987) Peripheral and spintal mechanisms of nociception. Physiol Rev 67:67–186PubMedGoogle Scholar
  4. Chen DF, Bianchetti M, Wiesendanger M (1987) The adrenergic agonist tizanidine has differential effects on flexor reflexes of intact and spinalized rat. Neuroscience 23:641–647PubMedCrossRefGoogle Scholar
  5. Davies J, Quinlan JE (1985) Selective inhibition of responses of feline dorsal horn neurones to nixious cutaneous stimuli by tizanidine (DS 103–282) and noradrenaline: involvement of alpha 2-adrenoceptors. Neuroscience 16:673–682PubMedCrossRefGoogle Scholar
  6. Hamill OP, Bormann J, Sakmann B (1983) Activation of multiple-conductance stade chloride channels in spinal neurones by glycine and GABA. Nature 305:805–808PubMedCrossRefGoogle Scholar
  7. Hamon H (1987) Les récepteurs GABA dans le système nerveux central. Aspects biochimiques et pharmacologiques. L’Encéphale 13:159–163PubMedGoogle Scholar
  8. Henneman E, Mendell LM (1981) Functional organization of the motoneuron pool and its inputs. In: Brooks VB (ed) Handbook of physiology: the nervous system, vol 2. Motor control. American Physiological Society, Washington DCGoogle Scholar
  9. Howe JR, Wang JY, Yaksh TL (1983) Selective antagonism of the antinoceptive effect of intrathecally applied alpha-adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J Pharmacol Exp Ther 224:552–558PubMedGoogle Scholar
  10. Jankowska E, Lundberg A (1981) Interneurons in the spinal cord. TINS 4:230–233Google Scholar
  11. Kuypers HGJM (1982) A new look at the organization of the motor system. In: Kuypers HGJM, Martin GF (eds) Anatomy of descending pathways to the spinal cord. Prog Brain Res 57:381–403Google Scholar
  12. Massion J (1984) Fonctions motrices. Encycl Med Chir Neurologie (17002 D10) 11:28 pagesGoogle Scholar
  13. Ono H, Matsumoto K, Kato K, Miyamoto M, Mori T, Nakamura T, Oka J, Fukuda H (1986) Effects of tizanidine, a centrally acting muscle relaxant, on motor systems. Gen Pharmacol 17:137–142PubMedCrossRefGoogle Scholar
  14. Roberts MHT (1984) 5 HT and antinociception. Neuropharmacology 23(12B):1529–1536PubMedCrossRefGoogle Scholar
  15. Wise SP, Strick PL (1984) Anatomical and physiological organization of the non primary motor cortex. TINS 7:442–446Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • H. Ollat
    • 1
  1. 1.Association pour la Neuro-Psycho-PharmacologieParisFrance

Personalised recommendations