Skip to main content

Neuroanatomical bases of spasticity

  • Chapter
Neurosurgery for Spasticity

Abstract

A detailed clinical analysis of spastic conditions shows that spasticity is not one homogeneous phenomenon. There are multiple clinical presentations of it, in particular: 1) in its selective distribution over different muscle groups in a given limb, 2) in its selective response to various natural stimuli, 3) in its time course characteristics, with the absence, but more often with the presence, of a spasticity-free interval of a few months after the lesion, and 4) in the location of the causative lesion(s). These lesions have been seen in regions as widely spread and diverse as the central and premotor cortices or their cortico-spinal fibres, the brain stem motor centres or their descending pathways, and the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander GE, De Long MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Baldissera F, Hultborn H, Illert M (1981) Integration in spinal neuronal systems. In: Brooks VB (ed) Handbook of physiology, section 1 (Nervous system), vol 2. Williams and Wilkins, Baltimore, pp 509–595

    Google Scholar 

  • Barolat-Romana G, Davis R (1980) Neurophysiological mechanisms in abnormal reflex activities in cerebal palsy and spinal spasticity. J Neurol Neurosurg Psychiatry 43:333–342

    Article  PubMed  CAS  Google Scholar 

  • Boivie J, Boman K (1981) Termination of a separate (proprioceptive?) cuneothalamic tract from external cuneate nucleus in monkey. Brain Res 224:235–246

    Article  PubMed  CAS  Google Scholar 

  • Bowker RM, Coulter JD (1981) Intracortical connectivities of somatic sensory and motor areas. Multiple cortical pathways in monkeys. In: Woolsey CN (ed) Cortical sensory organization, vol 1. Multiple somatic areas. Humana Press, Clifton, New Jersey, pp 205–239

    Chapter  Google Scholar 

  • Brown AG (1981) Organization in the spinal cord. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  • Carpenter MB.(1981) Anatomy of the corpus striatum and brain stem integrating systems. In: Brooks VB (ed) Handbook of physiology, section 1 (Nervous system), vol 2. Williams and Wilkins, Baltimore, pp 947–987

    Google Scholar 

  • Carpenter MB, Batton RR III (1982) Connections of the fastigial nucleus in the cat and monkey. Exp Brain Res [Suppl] 6:250–287

    Article  Google Scholar 

  • Carpenter MB, Carleton SC, Keller JT, Conte P (1981) Connections of the subthalamic nucleus in the monkey. Brain Res 224:1–29

    Article  PubMed  CAS  Google Scholar 

  • Cervero F (1986) Dorsal horn neurons and their sensory inputs. In: Yaksh TL (ed) Spinal afferent processing. Plenum Press, New York London, pp 197–216

    Google Scholar 

  • Chen DF, Bianchetti M, Wiesendanger M (1987) The adrenergic agonist tizanidine has differential effects on flexor reflexes of intact and spinalized rat. Neuroscience 23:641–647

    Article  PubMed  CAS  Google Scholar 

  • De Long MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brooks VB (ed) Handbook of physiology, section 1 (Nervous system), vol 2. Williams and Wilkins, Baltimore, pp 1017–1055

    Google Scholar 

  • De Long MR, Alexander GE, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT (1984) Role of basal ganglia in limb movements. Hum Neurobiol 2:235–244

    Google Scholar 

  • Delwaide PJ (1985) Electrophysiological testing of spastic patients: its potential usefulness and limitations. In: Delwaide PJ, Young RR (eds) Clinical neurophysiology in spasticity. Elsevier, Amsterdam New York, pp 185–203

    Google Scholar 

  • Devor M, Wall PD (1986) Spinal plasticity after nerve injury: mediolateral localization of rewired cells. Exp Brain Res [Suppl] 13:142–149

    Article  Google Scholar 

  • Dimitrijevic MR.(1988) Spasticity and rigidity. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Urban and Schwarzenberg, Baltimore Munich, pp 385–394

    Google Scholar 

  • Dimitrijevic MR, Nathan PW (1967a) Studies of spasticity in man. 1. Some features of spasticity. Brain 90:1–30

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MR, Nathan PW (1967b) Studies of spasticity in man. 2. Analysis of stretch reflexes in spasticity. Brain 90:333–358

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MR, Nathan PW (1968) Studies of spasticity in man. 3. Analysis of reflex activity evoked by noxious cutaneous stimulation. Brain 91:349–368

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MR, Nathan PW (1970) Studies of spasticity in man. 4. Changes in flexion reflex with repetitive cutaneous stimulation in spinal man. Brain 93:743–768

    Article  PubMed  CAS  Google Scholar 

  • Goldberger ME, Murray M (1982) Lack of sprouting and its presence after lesions of the cat spinal cord. Brain Res 241:227–239

    Article  PubMed  CAS  Google Scholar 

  • Grant G (1982) Spinocerebellar connections in the cat with particular emphasis on their cellular origin. Exp Brain Res [Suppl] 6:466–473

    Article  Google Scholar 

  • Grant G, Boivie J, Silfvenius H (1973) Course and termination of fibres from the nucleus Z of the medulla oblongata. An experimental light microscopical study in the cat. Brain Res 55:55–70

    Article  PubMed  CAS  Google Scholar 

  • Hassler R (1982) Architectonic organization of the thalamic nuclei. In: Schaltenbrand G, Walker AE (eds) Stereotaxy of the human brain. Thieme, Stuttgart New York, pp 140–180

    Google Scholar 

  • Jones EG (1983) The nature of the afferent pathways conveying short-latency inputs to primate motor cortex. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 263–285

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum Press, New York London

    Google Scholar 

  • Kucera P, Wiesendanger M (1985) Do ipsilateral cortico-spinal fibers participate in the functional recovery following unilateral pyramidal lesions in monkeys? Brain Res 348:297–303

    Article  PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brooks VB (ed) Handbook of physiology, section 1 (Nervous system), vol 2. Williams and Wilkins, Baltimore, pp 597–666

    Google Scholar 

  • Kuypers HGJM (1982) A new look at the organization of the motor system. In: Kuypers HGJM, Martin GF (eds) Anatomy of descending pathways to the spinal cord. Elsevier, Amsterdam New York, pp 381–403

    Google Scholar 

  • Laporte Y (1963) Activité réflexe de la moelle épinière. In: Kayser C (ed) Physiologie, vol 2. Flammarion, Paris, pp 376a–ay

    Google Scholar 

  • Lundberg A (1979) Multisensory control of spinal reflex pathways. Prog Brain Res 50:11–28

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1982) Inhibitory control from the brain stem of transmission from primary afferents to motoneurons, primary afferent terminals and ascending pathways. In: Sjölund B, Bjorklund A (eds) Brain stem control of spinal mechanisms. Elsevier, Amsterdam, pp 179–224

    Google Scholar 

  • Macchi G, Bentivoglio M, D’Atena C, Rossini P, Tempesta E (1977) The cortical projections of the thalamic intralaminar nuclei restudied by means of the HRP retrograde axonal transport. Neurosci Lett 4:121–126

    Article  PubMed  CAS  Google Scholar 

  • McCouch GP, Austin GM, Liu CN, Liu CY (1958) Sprouting as a cause of spasticity. J Neurophysiol 21:205–216

    PubMed  CAS  Google Scholar 

  • Micevych PE, Rodin BE, Kruger L (1986) The controversial nature of the evidence for nueroplasticity of afferent axons in the spinal cord. In: Yaksh TL (ed) Spinal afferent processing. Plenum Press, New York London, pp 417–443

    Google Scholar 

  • Nauta WJH, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1:3–42

    Article  PubMed  CAS  Google Scholar 

  • Nauta HJW, Cole M (1978) Efferent projections of the subthalamic nucleus: an auto radiographic study in monkey and cat. J Comp Neurol 180:1–16

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system. Springer, Berlin Heildelberg New York Tokyo

    Google Scholar 

  • Pierrot-Deseilligny E, Mazières L (1985) Spinal mechanisms underlying spasticity. In: Delwaide PJ, Young RR (eds) Clinical neurophysiology in spasticity. Elsevier, Amsterdam New York, pp 63–76

    Google Scholar 

  • Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate premotor and supplementary motor areas. J Neurosci 4:539–560

    PubMed  CAS  Google Scholar 

  • Sindou M (1972) Etude de la jonction radiculo-médullaire postérieure. La radicellotomie postérieure sélective dans la chirurgie de la douleur. Medical Thesis

    Google Scholar 

  • Sindou M, Quoex C, Baleydier C (1974) Fiber organization at the posterior spinal cordrootlet junction in man. J Comp Neurol 153:15–26

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara N (1981) Synaptic plasticity in the mammalian central nervous system. Annu Rev Neurosci 4:351–379

    Article  PubMed  CAS  Google Scholar 

  • Walberg F (1982) Paths descending from the brain stem-an overview. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Wiesendanger M (1983) Cortico-cerebellar loops. Exp Brain Res [Suppl] 7:41–51

    Article  Google Scholar 

  • Wiesendanger M (1985) Is there an animal model of spasticity? In: Delwaide PJ, Young RR (eds) Clinical neurophysiology in spasticity. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  • Wiesendanger R, Wiesendanger M (1985) The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (macaca fascicularis). Exp Brain Res 59:91–104

    PubMed  CAS  Google Scholar 

  • Willis WD Jr (1985) The pain system. Karger, Basel

    Google Scholar 

  • Willis WD Jr (1986) Ascending somatosensory systems. In: Yaksh TL (ed) Spinal afferent processing. Plenum Press, New York London, pp 243–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Jeanmonod, D. (1991). Neuroanatomical bases of spasticity. In: Sindou, M.P., Abbott, I.R., Keravel, Y. (eds) Neurosurgery for Spasticity. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6708-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6708-3_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7388-6

  • Online ISBN: 978-3-7091-6708-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics