Skip to main content

Grain transport rates in steady and unsteady turbulent airflows

  • Conference paper
Aeolian Grain Transport 1

Part of the book series: Acta Mechanica Supplementum ((ACTA MECH.SUPP.,volume 1))

Summary

Wind tunnel and field experiments are reported in which continuous, synchronous measurements of grain transport rates and near-bed velocity profiles were made at one second intervals to assess mass-flux response to velocity variations. Resulting grain flux and velocity series demonstrate the variability concealed by conventional time-averaged data. In steady tunnel winds, time-dependent mass transport rates are found to correlate better with fluctuations in mean velocity near the top of the saltation layer than with estimates of instantaneous shear stress. Quasi-periodic oscillation (20–30 seconds) of near-bed mass-flux and flow velocity in the lower regions of the inner boundary layer is evident in such airflows as the saltation system moves towards equilibrium with a developing bed form and confined boundary layer. This phenomenon may not occur in nature at these time-scales, however.

In systematically unsteady airflows, the time constant between flux rate and velocity near the top of the saltation layer is shown to be of order one second, tentatively confirming Anderson and Haff’s [2] calculations of saltation response time. Mass-flux also correlates well with large time-dependent variations in velocity in this region. Without grain replenishment, progressive surface re-sorting induces non-stationarity in grain flux under all observed flow regimes. Mass-flux and velocity histories measured on dunes show no correspondence. This difference is attributed to the stochastic nature of three-dimensional turbulence, the larger integral scales of atmospheric flows, measurement noise, and the effects of flow non-uniformity on satisfactory definition of shear velocity. Unsteady velocity profiles over a transverse dune are shown to be non-logarithmic above 20 cm but log-linear velocity segments of variable extent are found within the upper saltation layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. S.: A theoretical model for aeolian impact ripples. Sedimentology 34, 943–956 (1987).

    Article  Google Scholar 

  2. Anderson, R. S., Haff, P. K.: Simulation of eolian saltation. Science 241, 820–823 (1988).

    Article  Google Scholar 

  3. Anderson, R. S., Sørensen, M., Willetts, B. B.: A review of recent progress in our understanding of aeolian sediment transport (this volume).

    Google Scholar 

  4. Bagnold, R. A.: The flow of cohesionless grains in fluids. Phil. Trans. Roy. Soc. A,249, 235–297 (1956).

    MathSciNet  Google Scholar 

  5. Barndorff-Nielsen, O. E., Jensen, J. L., Nielsen, H. L., Rasmussen, K. R., Sørensen, M.: Wind tunnel tracer studies of grain progress. Proc. Int. Workshop on the Physics of Blown Sand, in Memoirs No. 8, Dept. Theor. Statist., Aarhus University, Denmark, 2, 243–251 (1985).

    Google Scholar 

  6. Belly, P. Y.: Sand movement by wind. Technical Memorandum No. 1, U.S. Army Coastal Eng. Res. Center, Washington D.C., 80 pp. (1964).

    Google Scholar 

  7. Busch, N. E., Panofsky, H. A.: Recent spectra of atmospheric turbulence. Quart. J. Roy. Meteorol. Soc. 94, 132–148 (1968).

    Article  Google Scholar 

  8. Butterfield, G. R.: The instrumentation and measurement of wind erosion. Proc. Sixth New Zealand Geog. Conf. 1, 125–130 (1971).

    Google Scholar 

  9. Chiu, T. Y.: Sand transport by wind. University of Florida (Gainsville), Dept. Coastal and Oceanographic Engineering, Technical Report TR-040, (1972).

    Google Scholar 

  10. Folk, R. L., Ward, W. C.: Brazos River bar: a study of the significance of grain-size parameters. J. Sedim. Petrol. 27, 3–26 (1957).

    Google Scholar 

  11. Gerety, K. M.: Problems with determination of U * from wind-velocity profiles measured in experiments with saltation. In: Barndorff-Nielsen, O. E. et al. (eds.): Proc. Int. Workshop on the Physics of Blown Sand, in Memoirs No. 8, Dept. Theor. Statist., Aarhus University, Denmark, 2, 271–300 (1985).

    Google Scholar 

  12. Gillette, D. A., Stockton, P. H.: Mass momentum and kinetic energy fluxes of saltating particles. In: Aeolian geomorphology, (W. G. Nickling ed.), pp. 35–56, Boston: Allen & Unwin 1986.

    Google Scholar 

  13. Greeley, R., Iversen, J. D.: Wind as a geological process, p. 333. Cambridge: Cambridge University Press 1985.

    Book  Google Scholar 

  14. Greeley, R., Leach, R. N., Williams, S. H., White, B. R., Pollack, J. B., Krinsley, D. H., Marshall, J. R.: Rate of wind abrasion on Mars. J. Geophys. Res. 87, 1009–1024 (1982).

    Google Scholar 

  15. Høgstup, J.: Velocity spectra in the unstable planetary boundary layer. J. Atmospheric Sci. 39, 2239–2248 (1982).

    Article  Google Scholar 

  16. Horikawa, K., Shen, H. W.: Sand movement by wind action (on the characteristics of sand traps). Tech. Mem. No. 119, 119pp, US Army Beach Erosion Board, Wash. D.C., 1960.

    Google Scholar 

  17. Horikawa, K., Hotta, S., Kraus, N.: Literature review of sand transport by wind on a dry sand surface. Coastal Engineering 9, 503–526 (1986).

    Article  Google Scholar 

  18. Howard, A. D., Walmsley, J. L.: Simulation model of isolated dune sculpture by wind. In: Barndorff-Nielsen, O. E. et. al. (eds.): Proc. Int. Workshop on the Physics of Blown Sand, in Memoirs No. 8, Dept. Theor. Statist, Aarhus University, Denmark, 2, 377–390 (1985).

    Google Scholar 

  19. Jensen, J. L., Rasmussen, K. R., Sørensen, M., Willetts, B. B.: The Hanstholm experiment 1982. Sand grain saltation on a beach. Dept. Theor. Statist., Aarhus University, Denmark, Research Report No. 125, 1984.

    Google Scholar 

  20. Jensen, J. L., Sørensen, M.: Estimation of some aeolian saltation transport parameters: a reanalysis of Williams’ data. Sedimentology 33, 547–558 (1986).

    Article  Google Scholar 

  21. Jones, J. R., Willetts, B. B.: Errors in measuring uniform aeolian sand flow by means of an adjustable trap. Sedimentology 26, 463–468 (1979).

    Article  Google Scholar 

  22. Kawamura, R.: Study on sand movement by wind. Reports of Physical Sciences research Institute of Tokyo University, 5, 95–112 (1951). [Translated from Japanese by National Aeronautic and Space Administration (NASA), Washington D. C. (1972)].

    Google Scholar 

  23. McLean, S. R., Smith, J. D.: A model for flow over two-dimensional bed forms. J. Hydraul. Eng. 112, 300–317 (1986).

    Article  Google Scholar 

  24. Mulligan, K. R.: Velocity profiles measured on the windward slope of a transverse dune. Earth Surface Processes and Landforms 13, 573–582 (1988).

    Article  Google Scholar 

  25. Nickling, W. G.: The initiation of particle movement by wind. Sedimentology 35, 499–511 (1988).

    Article  Google Scholar 

  26. Owen, P. R.: Saltation of uniform grains in air. J. Fluid Mech. 20, 225–242 (1964).

    Article  MATH  Google Scholar 

  27. Owen, P. R., Gillette, D. A.: Wind tunnel constraint on saltation. In: Barndoff-Nielsen, O. E. et. al. (eds.): Proc. Int. Workshop on the Physics of Blown Sand, in Memoirs No. 8, Dept. Theor. Statist., Aarhus University, Denmark, 2, 253–269 (1985).

    Google Scholar 

  28. Phillips, C. J., Willetts, B. B.: A review of selected literature on sand stabilization. Coastal Engineering 2, 133–147 (1978).

    Article  Google Scholar 

  29. Rasmussen, K. R., Mikkelsen, H. E.: Development of a boundary layer wind tunnel for aeolian studies. Geoskrift No. 27, Geologisk Institut, Aarhus University, Denmark, (1988).

    Google Scholar 

  30. Rasmussen, K. R., Mikkelsen, H. E.: On the efficiency of sand traps and the transport rate profile. Sedimentology 38, in press (1991).

    Google Scholar 

  31. Rasmussen, K. R., Sørensen, M., Willetts, B. B.: Measurement of saltation and wind strength on beaches. In: Barndorff-Nielsen, O. E. et. al. (eds.): Proc. Int. Workshop on the Physics of Blown Sand, in Memoirs No. 8, Dept. Theor. Statist., Aarhus University, Denmark, 2, 301–325 (1985).

    Google Scholar 

  32. Raes, G.: Een windtunnelstudie over het effect van de tÿd op de granulometrie en de deflatiegevaeligheid by erosie van een ‘loessig’ materiaal. M. Sc. Thesis, K. U. Leuven, 116pp. 1988.

    Google Scholar 

  33. Sarre, R. D.: Aeolian sand transport. Progr. Phys. Geog. 11, 157–182 (1987).

    Article  Google Scholar 

  34. Sarre, R. D.: Evaluation of aeolian sand transport equations using intertidal zone measurements, Saunton Sands, England. Sedimentology 35, 671–679 (1988).

    Article  Google Scholar 

  35. Task Committee on Preparation of Sedimentation Manual: Sediment transportation mechanics: wind erosion and transportation. J. Hydraul. Div. Am. Soc. Civ. Engrs. 91 (HY2), 267–287 (1965).

    Google Scholar 

  36. Ungar, J. E., Haff, P. K.: Steady state saltation in air. Sedimentology 34, 289–299 (1987).

    Article  Google Scholar 

  37. White, B. R., Mounla, H.: An experimental study of Froude number effect on wind-tunnel saltation (this volume).

    Google Scholar 

  38. Williams, G.: Some aspects of the eolian saltation load. Sedimentology 3, 257–287 (1964).

    Article  Google Scholar 

  39. Williams, J. J., Butterfield, G. R., Clark, D.: Aerodynamic entrainment threshold: effects of boundary layer flow conditions. Sedimentology 38, in press (1991).

    Google Scholar 

  40. Williams, J. J., Butterfield, G. R., Clark, D.: Rates of aerodynamic entrainment in a developing boundary layer. Sedimentology 37, 1039–1048, (1990).

    Article  Google Scholar 

  41. Zingg, A. W.: Wind tunnel studies of the movement of sedimentary material. Proc. Fifth Hydraulics Conf., Iowa University Studies in Engineering Bulletin 34, 111–135 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this paper

Cite this paper

Butterfield, G.R. (1991). Grain transport rates in steady and unsteady turbulent airflows. In: Barndorff-Nielsen, O.E., Willetts, B.B. (eds) Aeolian Grain Transport 1. Acta Mechanica Supplementum, vol 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6706-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6706-9_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82269-2

  • Online ISBN: 978-3-7091-6706-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics