Saltation layers, vegetation canopies and roughness lengths

  • M. R. Raupach
Part of the Acta Mechanica Supplementum book series (ACTA MECH.SUPP., volume 1)


This paper argues that vegetation canopies offer an analogue for saltation layers in that both flows have similar momentum sink distributions (from the fluid). Therefore, information on turbulence and momentum transfer in vegetation canopies provides guidance for turbulence in saltation layers. Working from the simplest gradient-diffusion theory for momentum transfer known to be useful in vegetation canopies, the paper explores a first-order theory for fluid momentum transfer in a saltation layer. This leads to an analytic expression for the overall momentum absorption capacity or roughness lenth z 0 S of the saltation layer, different from previous suggestions and in agreement with field observations of saltation.


Momentum Transfer Particle Trajectory Roughness Length Wind Profile Vegetation Canopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Charnock, H.: Wind stress on a water surface. Quart. J. Roy. Meteorol. Soc. 81, 639–640 (1955).CrossRefGoogle Scholar
  2. [2]
    Owen, P. R.: Saltation of uniform grains in air. J. Fluid Mech. 20, 225–242 (1964).MATHCrossRefGoogle Scholar
  3. [3]
    Chamberlain, A. C.: Roughness length of sea, sand and snow. Boundary-Layer Meteorol. 25, 405–409 (1983).CrossRefGoogle Scholar
  4. [4]
    Ungar, J., Haff, P. K.: Steady state saltation in air. Sedimentology 34, 289–299 (1987).CrossRefGoogle Scholar
  5. [5]
    Anderson, R. S., Hallet, B.: Sediment transport by wind: toward a general model. Geol. Soc. Am. Bull. 97, 523–535 (1986).CrossRefGoogle Scholar
  6. [6]
    Raupach, M. R.: Canopy transport processes. In: Flow and transport in the natural environment: advances and applications. (eds. W. L. Steffen, O. T. Denmead) Springer, Berlin, pp. 95–127 (1988).CrossRefGoogle Scholar
  7. [7]
    Raupach, M. R.: Stand overstorey processes. Phil. Trans. Roy. Soc. London B 324, 175–190 (1989).CrossRefGoogle Scholar
  8. [8]
    Raupach, M. R., Antonia, R. A., Rajagopalan, S.: Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 1–25 (1991).CrossRefGoogle Scholar
  9. [9]
    Finnigan, J. J.: Turbulence in waving wheat. I. Mean statistics and honami. Boundary-Layer Meteorol. 16, 181–211 (1979).CrossRefGoogle Scholar
  10. [10]
    Finnigan, J. J.: Turbulence in waving wheat. I I. Structure of momentum transfer. Boundary-Layer Meteorol. 16, 213–236 (1979).CrossRefGoogle Scholar
  11. [11]
    Shaw, R. H., Tavangar, J., Ward, D. P.: Structure of the Reynolds stress in a canopy layer. J. Climate Appl. Meteorol. 22, 1922–1931 (1983).CrossRefGoogle Scholar
  12. [12]
    Shaw, R. H., Silversides, R. H., Thurtell, G. W.: Some observations of turbulence and turbulent transport within and above plant canopies. Boundary-Layer Meteorol. 5, 429–449 (1974).CrossRefGoogle Scholar
  13. [13]
    Corrsin, S.: Limitations of gradient transport models in random walks and in turbulence. Adv. Geophys. 18A, 25–60 (1974).Google Scholar
  14. [14]
    Denmead, O. T., Bradley, E. F.: On scalar transport in plant canopies. Irrig. Sci. 8, 131–149 (1987).CrossRefGoogle Scholar
  15. [15]
    Finnigan, J. J., Raupach, M. R.: Transfer processes in plant canopies in relation to stomatal characteristics. In: Stomatal function, (eds. E. Zeiger, G. D. Farquhar, I. R. Cowan). Stanford University Press, Stanford, CA, USA, pp. 385–429 (1987).Google Scholar
  16. [16]
    Raupach, M. R.: Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric. For. Meteorol. 47, 85–108 (1989).CrossRefGoogle Scholar
  17. [17]
    Thorn, A. S.: Momentum, mass and heat exchange of plant communities. In: Vegetation and the atmosphere, vol. 1. (ed. J. L. Monteith), Academic Press, London, pp. 57–109 (1975).Google Scholar
  18. [18]
    Anderson, R. S., Haff, P. K.: Wind modification and bed response during saltation of sand in air (this volume).Google Scholar
  19. [19]
    Bagnold, R. A.: The physics of blown sand and desert dunes. London: Methuen 1941.Google Scholar
  20. [20]
    Nalpanis, P.: Saltating and suspended particles over flat and sloping surfaces. I I. Experiments and numerical simulations. Proc. Intern. Workshop Phys. Blown Sand, Aarhus, May 28–31, 1985, (ed. O. E. Barndorff-Nielsen) Dept. Theoretical Statistics, University of Aarhus, Denmark, pp. 37–66 (1985).Google Scholar
  21. [21]
    Rasmussen, K. R., Mikkelsn, H. E.: Wind tunnel observations of aeolian transport rates (this volume).Google Scholar
  22. [22]
    Rasmussen, K. R., Sørensen, M., Willetts, B. B.: Measurements of saltation and wind strength on beaches. Proc. Intern. Workshop Phys. Blown Sand, Aarhus, May 28–31, 1985 (ed. O. E. Barndorff-Nielsen) Dept. Theoretical Statistics, University of Aarhus, Denmark, pp. 301–325 (1985).Google Scholar
  23. [23]
    Anderson, R. S.: Sediment transport by wind: saltation, suspension, erosion and ripples. Ph. D. thesis, University of Washington (1985).Google Scholar
  24. [24]
    Sørensen, M.: Estimation of some aeolian saltation transport parameters from transport rate profiles. Proc. Intern. Workshop Phys. Blown Sand, Aarhus, May 28–31, 1985 (ed. O. E. Barndorff-Nielsen) Dept. Theoretical Statistics, University of Aarhus, Denmark, pp. 141–190 (1985).Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • M. R. Raupach
    • 1
  1. 1.CSIRO Centre for Environmental MechanicsBlack MountainCanberraAustralia

Personalised recommendations