Numerical model of the saltation cloud

  • I. K. McEwan
  • B. B. Willetts
Part of the Acta Mechanica Supplementum book series (ACTA MECH.SUPP., volume 1)


A computer model of the saltation cloud is described. Experimental results from high speed films are used to characterise the grain/bed collision. The importance of momentum exchange in determining the number of ejected grains from a collision is demonstrated. The modification of the wind velocity profile is discussed and a realistic wind profile is calculated. Also the mass flux profiles calculated compare well to their expected shape. The model attains a steady state, characterised by a steady wind and a stationary grain population, after roughly 2 seconds. The response of the total mass flux to shear velocity is approximately cubic. Finally, potential uses of the model in studying ripple formation and dust emission are discussed.


Mass Flux Shear Velocity Wind Profile Impact Speed Saltation Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, R. S., Haff, P. K.: Simulation of eolian saltation. Science 241, 820–823 (1988).CrossRefGoogle Scholar
  2. [2]
    Werner, B. T.: A steady-state model of wind blown sand transport. J. Geol. 98, 1–17 (1990).CrossRefGoogle Scholar
  3. [3]
    Owen, P. R.: Saltation of uniform sand grains in air. J. Fluid. Mech. 20, 225–242 (1964).MATHCrossRefGoogle Scholar
  4. [4]
    Sørensen, M.: Estimation of some eolian saltation transport parameters from transport rate profiles. Proc. Int. Wkshp. Physics of Blown Sand 1, 141–190 (1985).Google Scholar
  5. [5]
    White, B. R., Schulz, J. C.: Magnus effect in saltation. J. Fluid Mech. 81, 497–512 (1977).CrossRefGoogle Scholar
  6. [6]
    Hunt, J. C. R., Nalpanis, P.: Saltating and suspended particles over flat and sloping surfaces I. Modelling concepts. Proc. Int. Wkshp. Physics of Blown Sand 1, 9–36 (1985).Google Scholar
  7. [7]
    Morsi, S. A., Alexander, A. J.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972).MATHCrossRefGoogle Scholar
  8. [8]
    Schiller, L., Nauman, A.: Z. Ver. Dent. Ing. 77, 318 (1933).Google Scholar
  9. [9]
    White, F.: Viscous flow. New York: McGraw-Hill 1974.MATHGoogle Scholar
  10. [10]
    Ungar, J. E., Haff, P. K.: Steady-state saltation in air. Sedimentology, 34, 289–299 (1987).CrossRefGoogle Scholar
  11. [11]
    Willetts, B. B., Rice, M. A.: Inter-saltation collisions. Proc. Int. Wkshp. Physics of Blown Sand 1, 83–100 (1985).Google Scholar
  12. [12]
    Mitha, S., Tran, M. Q., Werner, B. T., Haff, P. K.: The grain bed impact process in aeolian saltation. Acta Mech. 63, 267–278 (1988).CrossRefGoogle Scholar
  13. [13]
    Willetts, B. B., Rice, M. A.: Collision in aeolian transport: the saltation/creep link. In: Nickling, W. G. (ed.) Aeolian geomorphology. Allen & Unwin, pp. 1–17.Google Scholar
  14. [14]
    Owen, P. R.: The physics of sand movement. Lecture Notes, Wkshp on physics of desertification, Trieste, (1980).Google Scholar
  15. [15]
    Gerety, K. M.: Problems with determination of U* from wind velocity profiles in experiments with saltation. Proc. Int. Wkshp. Physics of Blown Sand 2, 271–300 (1985).Google Scholar
  16. [16]
    Bagnold, R. A.: The physics of wind blown sand and desert dunes. London: Chapman and Hall 1973.Google Scholar
  17. [17]
    Rasmussen, K. R., Mikkelsen, H. E.: Aeolian transport in a boundary layer wind tunnel. Geoskrifter Nr. 29, Geological Institute, Aarhus University (1988).Google Scholar
  18. [18]
    Willetts, B. B., Rice, M. A.: Collision of quartz grains with a sand bed: the influence of incident angle. Earth Surface Processes and Landforms 14, 719–730 (1989).CrossRefGoogle Scholar
  19. [19]
    Willetts, B. B., McEwan, I. K., Rice, M. A.: Initiation of motion of quartz sand grains (this volume).Google Scholar
  20. [20]
    Rice, M. A.: Grain shape effects on aeolian sediment transport (this volume).Google Scholar
  21. [21]
    Fletcher, B.: The erosion of dust by an airflow. J. Phys. D: Appl. Phys. 9, 913–924 (1976).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • I. K. McEwan
    • 1
  • B. B. Willetts
    • 1
  1. 1.Department of EngineeringUniversity of Aberdeen, Kings CollegeAberdeenUK

Personalised recommendations