Advertisement

A review of recent progress in our understanding of aeolian sediment transport

  • R. S. Anderson
  • M. Sørensen
  • B. B. Willetts
Part of the Acta Mechanica Supplementum book series (ACTA MECH.SUPP., volume 1)

Summary

We review recent progress in our understanding of aeolian sediment transport, with emphasis on work published since 1985. The current conceptual model of sediment transport is discussed at length, with attention given to problems of definition that have arisen. We discuss in depth the collision (grain impact) and aerodynamic entrainment (initial motion) processes. The effect of the evolving population of moving grains on the wind (the wind feedback mechanism) is treated in the context of recent modelling of the self-regulating saltation process. The link between saltation and suspension is discussed briefly. We conclude by outlining future research directions that must involve a greater symbiosis of experimentalists and theoreticians, working both at the grain and the bedform scales.

Keywords

Eddy Viscosity Saltation System Sand Transport Sand Transport Rate Launch Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson, R. S.: Sediment transport by wind: saltation, suspension, erosion and ripples. Ph. D. Thesis, University of Washington (1986).Google Scholar
  2. [2]
    Anderson, R. S.: A theoretical model for aeolian impact ripples. Sedimentology 34, 943–956 (1987).CrossRefGoogle Scholar
  3. [3]
    Anderson, R. S.: Eolian sediment transport as a stochastic process: the effects of a fluctuating wind on particle trajectories. J. Geol. 95, 497–512 (1987).CrossRefGoogle Scholar
  4. [4]
    Anderson, R. S.: The nature of the wind feedback in eolian saltation. Eos 69, 1195 (1988).CrossRefGoogle Scholar
  5. [5]
    Anderson, R. S.: Saltation of sand: a qualitative review with biological analogy. Proc. Roy. Soc. Edinburgh 96B, 149–165 (1990).Google Scholar
  6. [6]
    Anderson, R. S., Haff, P. K.: Simulation of eolian saltation. Science 241, 820–823 (1988).CrossRefGoogle Scholar
  7. [7]
    Anderson, R. S., Haff, P. K.: Wind modification and bed response during saltation of sand in air (this volume).Google Scholar
  8. [8]
    Anderson, R. S., Hallet, B.: Sediment transport by wind: toward a general model. Geol. Soc. Am. Bull. 97, 523–535 (1986).CrossRefGoogle Scholar
  9. [9]
    Bagnold, R. A.: The physics of blown sand and desert dunes. London: Methuen 1941.Google Scholar
  10. [10]
    Barndorff-Nielsen, O. E.: Sorting, texture and structure. Proc. Roy. Soc. Edinburgh 96B, 167–179 (1990).Google Scholar
  11. [11]
    Barndorff-Nielsen, O. E., Jensen, J. L., Nielsen, H. L., Rasmussen, K. R., Sørensen, M.: Wind tunnel tracer studies of grain progress. In: Barndorff-Nielsen, O. E. et al. (eds.): Proceedings of the International Workshop on the Physics of Blown Sand, Memoirs No. 8, vol. 2. Dept. Theor. Statist., Aarhus Univ., Denmark, pp. 243–251 (1985).Google Scholar
  12. [12]
    Barndorff-Nielsen, O. E., Møller, J. T., Rasmussen, K. R., Willetts, B. B.: Proceedings of the International Workshop on the Physics of Blown Sand. Memoirs No. 8. Dept. Theor. Statist., Aarhus Univ., Denmark 1985.Google Scholar
  13. [13]
    Bisal, F., Nielsen, K. C.: Movement of soil particles in saltation. Can. J. Soil Sci. 42, 81–86 (1962).CrossRefGoogle Scholar
  14. [14]
    Brimhall, G. H., Lewis, C. J., Ague, J. J., Dietrich, W. E., Hampel, J., Teague, T., Rix, P.: Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 333, 819–824 (1988).CrossRefGoogle Scholar
  15. [15]
    Chadwick, O. A., Davis, J. O.: Soil-forming intervals caused by eolian sediment pulses in the Lahontan basin, northwestern Nevada. Geology 18, 243–246 (1990).CrossRefGoogle Scholar
  16. [16]
    Fredsoe, J.: On the development of dunes in erodible channels. J. Fluid Mech. 64, 1–16 (1974).MATHCrossRefGoogle Scholar
  17. [17]
    Gillette, D. A., Blifford, D. A., Fenster, C. R.: Measurement of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. J. Appl. Met. 11, 977–987 (1972).CrossRefGoogle Scholar
  18. [18]
    Gillette, D. A., Blifford, D. A., Fryrear, D. W.: The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils. J. Geophys. Res. 79, 4068–4075 (1974).CrossRefGoogle Scholar
  19. [19]
    Gillette, D. A., Goodwin, P. A.: Microscale transport of sand-sized soil aggregates eroded by wind. J. Geophys. Res. 79, 4080–4084 (1974).CrossRefGoogle Scholar
  20. [20]
    Gillette, D. A., Stockton, P. H.: Mass, momentum and kinetic energy fluxes of saltating particles. In: Nickling, W. G. (ed.): Aeolian geomorphology. Boston: Allen and Unwin. pp. 35–56 (1986).Google Scholar
  21. [21]
    Gillette, D. A., Walker, T. L.: Characteristics of airborne particles produced by wind erosion of sandy soil, high plains of West Texas. Soil Sci. 123, 97–110 (1977).CrossRefGoogle Scholar
  22. [22]
    Grass, A. J.: Initial instability of fine bed sand. J. Hyd. Div. ASCE 96 (HY3), 619–732 (1970).Google Scholar
  23. [23]
    Grass, A. J.: Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233–255 (1971).CrossRefGoogle Scholar
  24. [24]
    Greeley, R., Williams, S. H., Marshall, J. R.: Velocities of windblown particles in saltation: preliminary laboratory and field measurements. In: Brookfield, M. E., Ahlbrandt, T. S. (eds.): Eolian sediment and processes. Developments in sedimentology 38. Amsterdam: Elsevier 1983.Google Scholar
  25. [25]
    Greeley, R., Iversen, J. D.: Wind as a geological process. Cambridge: Cambridge University Press 1985.CrossRefGoogle Scholar
  26. [26]
    Hunt, J. C. R., Nalpanis, P.: Saltating and suspended particles over flat and sloping surfaces. I. Modelling concepts. In: Barndorff-Nielsen, O. E. et al. (eds.): Proceedings of International Workshop on the Physics of Blown Sand, Memoirs No. 8, vol. 1. Dept. Theor. Statist., Aarhus Univ., Denmark, pp. 9–36 (1985).Google Scholar
  27. [27]
    Hunter, R. E., Richmond, B. M.: Daily cycles in coastal dunes. Sed. Geol. 55, 43–67 (1988).CrossRefGoogle Scholar
  28. [28]
    Jensen, J. L., Sørensen, M.: On the mathematical modelling of aeolian saltation. In: Sumer, B. M., Müller, A. (eds.): Mechanics of sediment transport. Rotterdam: Balkema, pp. 65–72 (1983).Google Scholar
  29. [29]
    Jensen, J. L., Sørensen, M.: Estimation of some aeolian saltation transport parameters: a reanalysis of Williams’ data. Sedimentology 33, 547–558 (1986).CrossRefGoogle Scholar
  30. [30]
    Kennedy, J. P.: The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech. 16, 521–544 (1963).MATHCrossRefGoogle Scholar
  31. [31]
    Kline, S. J., Reynolds, W. C, Schraub, F. A., Rundstadler, P. W.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967).CrossRefGoogle Scholar
  32. [32]
    McEwan, I. K., Willetts, B. B.: Numerical model of the saltation cloud (this volume).Google Scholar
  33. [33]
    McLean, S. R., Smith, J. D.: A model for flow over two-dimensional bed forms. J. Hydr. Eng., ASCE 112, 300–317 (1986).CrossRefGoogle Scholar
  34. [34]
    Mitha, S., Tran, M. Q., Werner, B. T., Haff, P. K.: The grain-bed impact process in aeolian saltation. Acta Mech. 63, 267–278 (1986).CrossRefGoogle Scholar
  35. [35]
    Muhs, D. R., Bush, C. A., Stewart, K. C, Crittenden, R. C.: Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and Western Atlantic islands. Quaternary Res. 33, 157–177 (1990).CrossRefGoogle Scholar
  36. [36]
    Nalpanis, P.: Saltating and suspended particles over flat and sloping surfaces. I I. Experiments and numerical simulations. In: Barndorff-Nielsen, O. E. et al. (eds.): Proceedings of International Workshop on the Physics of Blown Sand, Memoirs No. 8, vol. 1. Dept. Theor. Statist., Aarhus Univ., Denmark, pp. 37–66 (1985).Google Scholar
  37. [37]
    Nelson, J. M.: Mechanics of flow and sediment transport over nonuniform erodible beds. Ph. D. Thesis, University of Washington (1988).Google Scholar
  38. [38]
    Nickling, W. G.: The initiation of particle movement by wind. Sedimentology 35, 499–511 (1988).CrossRefGoogle Scholar
  39. [39]
    Owen, P. R.: Saltation of uniform grains in air. J. Fluid Mech. 20, 225–242 (1964).MATHCrossRefGoogle Scholar
  40. [40]
    Owen, P. R.: The physics of sand movement. Lecture Notes, Workshop on Physics of Desertification, Trieste 1980.Google Scholar
  41. [41]
    Owen, P. R.: The erosion of dust by a turbulent wind. Lecture at the International Workshop on Sand Transport and Desertification in Arid Lands, Khartoum 1985.Google Scholar
  42. [42]
    Rasmussen, K. R.: Flow over rough terrain. Proc. Roy. Soc. Edinburgh Ser. 96B, 129–147 (1990).MathSciNetGoogle Scholar
  43. [43]
    Rasmussen, K. R., Mikkelsen, H. E.: Development of a boundary layer wind tunnel for aeolian studies. Geoskrifter 27, Geologisk Institut, Aarhus Univ. (1988).Google Scholar
  44. [44]
    Rasmussen, K. R., Mikkelsen, H. E.: The transport rate profile and the efficiency of sand traps. Preprint (1989).Google Scholar
  45. [45]
    Rasmussen, K. R., Sørensen, M., Willetts, B. B.: Measurement of saltation and wind strength on beaches. In: Barndorff-Nielsen, O. E. et al. (eds.): Proceedings of International Workshop on the Physics of Blown Sand, Memoirs No. 8, vol. 2. Dept. Theor. Statist., Aarhus Univ., Denmark, pp. 301–325 (1985).Google Scholar
  46. [46]
    Rumpel, D. A.: Successive aeolian saltation: studies of idealized collisions. Sedimentology 32, 267–280 (1985).CrossRefGoogle Scholar
  47. [47]
    Sørensen, M.: Estimation of some aeolian saltation transport parameters from transport rate profiles. In: Barndorff-Nielsen, O. E. et al. (eds.): Proceedings of International Workshop on the Physics of Blown Sand, Memoirs No. 8, vol. 1. Dept. Theor. Statist., Aarhus Univ., Denmark, pp. 141–190 (1985).Google Scholar
  48. [48]
    Sørensen, M.: Radioactive tracer studies of grain progress in aeolian sand transport. A statistical analysis. Research Report No. 141, Dept. Theor. Statist., Aarhus Univ. (1987).Google Scholar
  49. [49]
    Sørensen, M.: An analytic model of wind-blown sand transport (this volume).Google Scholar
  50. [50]
    Thomson, D. J.: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529–556 (1987).MATHCrossRefGoogle Scholar
  51. [51]
    Tsuchiya, Y., Kawata, Y,: Characteristics of saltation of grains by wind. Proceedings 13th International Coastal Engineering Conference, pp. 1617–1625 (1972).Google Scholar
  52. [52]
    Ungar, J., Haff, P. K.: Steady state saltation in air. Sedimentology 34, 289–299 (1987).CrossRefGoogle Scholar
  53. [53]
    van Dop, H., Nieuwstadt, F. T. M., Hunt, J. C. R.: Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids 28, 1639–1653 (1985).MATHCrossRefGoogle Scholar
  54. [54]
    Werner, B. T.: A physical model of wind-blown sand transport. Ph. D. Thesis, California Institute of Technology (1987).Google Scholar
  55. [55]
    Werner, B. T.: A steady-state model of wind-blown sand transport. J. Geol. 98, 1–17 (1990).CrossRefGoogle Scholar
  56. [56]
    Werner, B. T., Haff, P. K.: A simulation study of the low energy ejecta resulting from single impacts in aeolian saltation. In: Arndt, R. E. A. et al. (eds.): Advances in aerodynamics, fluid mechanics, and hydraulics. New York: American Society of Civil Engineers, pp. 337–345 (1986).Google Scholar
  57. [57]
    Werner, B. T., Haff, P. K.: The impact process in aeolian saltation: two-dimensional simulations. Sedimentology 35, 189–196 (1988).CrossRefGoogle Scholar
  58. [58]
    White, B. R., Schulz, J. C: Magnus effect in saltation. J. Fluid Mech. 81, 497–512 (1977).CrossRefGoogle Scholar
  59. [59]
    Willetts, B. B., Rice, M. A.: Inter-saltation collisions. In: Barndorff-Nielsen, O. E. et al. (eds.): Proceedings of the International Workshop on the Physics of Blown Sand, Memoirs No. 8, vol. 1. Dept. Theor. Statist. Aarhus Univ., Denmark, pp. 83–100 (1985).Google Scholar
  60. [60]
    Willetts, B. B., Rice, M. A.: Collission in aeolian transport: the saltation/creep link. In: Nickling, W. G. (ed.): Aeolian geomorphology. Boston: Allen and Unwin, pp. 1–17 (1986).Google Scholar
  61. [61]
    Willetts, B. B., Rice, M. A.: Collisions in aeolian saltation. Acta Mech. 63, 255–265 (1986).CrossRefGoogle Scholar
  62. [62]
    Willetts, B. B., Rice, M. A.: Particle dislodgement from a flat bed by wind. Earth Surf. Proc. Land Forms 13, 717–728 (1988).CrossRefGoogle Scholar
  63. [63]
    Willetts, B. B., Rice, M. A.: Collision of quartz grains with a sand bed: the influence of incident angle. Earth Surf. Proc. Land Forms 14, 719–730 (1989).CrossRefGoogle Scholar
  64. [64]
    Williams, G.: Some aspects of the eolian saltation load. Sedimentology 3, 257–287 (1964).CrossRefGoogle Scholar
  65. [65]
    Williams, J. J.: Aeolian entrainment thresholds in a developing boundary layer. Ph. D. Thesis, University of London (1986).Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • R. S. Anderson
    • 1
  • M. Sørensen
    • 2
  • B. B. Willetts
    • 3
  1. 1.Earth Sciences BoardUniversity of California Santa CruzSanta CruzUSA
  2. 2.Department of Theoretical Statistics, Institute of MathematicsUniversity of AarhusAarhus CDenmark
  3. 3.Department of EngineeringUniversity of Aberdeen, Kings CollegeAberdeenScotland

Personalised recommendations