Roughness element effect on local and universal saltation transport

  • J. D. Iversen
  • W. P. Wang
  • K. R. Rasmussen
  • H. E. Mikkelsen
  • R. N. Leach
Part of the Acta Mechanica Supplementum book series (ACTA MECH.SUPP., volume 2)


Experimental results are presented which illustrate the effects of permanent surface obstructions on saltation phenomena. It is shown that the topographic drift geometry and the dimensionless erosion rates of windward erosion associated with cylindrical obstacles are strong functions of the cylinder aspect ratio. For short cylinders, there is also significant erosion taking place in the far wake. These two erosional areas develop due to different sets of separation vortex systems. For multi-element roughness arrays, sparse array data are presented which illustrate the increase of threshold friction speed with element frontal area density and roughness element drag coefficient.


Aspect Ratio Circular Cylinder Froude Number Roughness Element Horseshoe Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Schlichting, H.: Boundary-layer theory, 6th ed., p. 653, New York: McGraw-Hill (1968).Google Scholar
  2. [2]
    Wooding, R. A., Bradley, E. F., Marshall, J. K.: Drag due to regular arrays of roughness elements of varying geometry. Boundary-Layer Meteorology 5, 285–308 (1973).CrossRefGoogle Scholar
  3. [3]
    Raupach, M. R., Thorn, A. S., Edwards, I.: A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorology 18, 373–397 (1980).CrossRefGoogle Scholar
  4. [4]
    Chepil, W. S.: Properties of soil which influence wind erosion. I. The governing principle of surface roughness. Soil Sci. 69, 149–162 (1950).CrossRefGoogle Scholar
  5. [5]
    Lyles, L., Schrandt, R. L., Schmeidler, N. F.: How aerodynamic roughness elements control sand movement. Transactions of the ASAE 17,134–139 (1974).Google Scholar
  6. [6]
    Lyles, L., Allison, B. E.: Wind erosion: uniformly spacing nonerodible elements eliminates effects of wind direction variability. J. Soil and Water Conservation 30, 225–226 (1975).Google Scholar
  7. [7]
    Iversen, J. D.: Small-scale modeling of snow-drift phenomena. In: Wind tunnel modeling for civil engineering applications (T. Reinhold, ed.) Cambridge: University Press, pp. 522–545 (1982).Google Scholar
  8. [8]
    Roper, A. T.: A cylinder in a turbulent shear layer, Ph. D. Dissertation, Colorado State University, Fort Collins (1967).Google Scholar
  9. [9]
    Sedney, R.: A survey of the effects of small protuberances on boundary-layer flows. AIAA J. 11, 782–792 (1973).CrossRefGoogle Scholar
  10. [10]
    Hansen, A. C.: Vortex-containing wakes of surface obstacles, Ph. D. Dissertation, Colorado State University, Fort Collins (1975).Google Scholar
  11. [11]
    Woo, H. G. C., Peterka, J. A., Cermak, J. E.: Wind-tunnel measurements in the wakes of structures. NASA Contractor Report CR-2806, 226 p. (1977).Google Scholar
  12. [12]
    Hunt, J. C. R., Abell, C. J., Peterka, J. A., Woo, H.: Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization. J. Fluid Mech. 86, 179–200 (1978).CrossRefGoogle Scholar
  13. [13]
    Baker, C. J.: The turbulent horseshoe vortex. J. Wind Engineering and Industrial Aerodynamics 6, 9–23 (1980).CrossRefGoogle Scholar
  14. [14]
    Allen, J. R. L.: Scour marks in snow. J. Sedimentary Petrol. 35, 331–338 (1965).Google Scholar
  15. [15]
    Karcz, I.: Fluviatile obstacle marks from the wadis of the Negev (Southern Israel). J. Sedimentary Petrol. 38, 1000–1012 (1968).Google Scholar
  16. [16]
    Shen, H. W., Schneider, V. R., Karaki, S.: Local scour around bridge piers. J. Hydraulics Division ASCE 95, 1919–1940 (1969).Google Scholar
  17. [17]
    Eckman, J. E., Nowell, A. R. M.: Boundary skin friction and sediment transport about an animal-tube mimic. Sedimentology 31,851–862 (1984).CrossRefGoogle Scholar
  18. [18]
    Iversen, J. D., Greeley, R.: Martian crater dark streak lengths: explanation from wind tunnel experiments. Icarus 58, 358–362 (1984).CrossRefGoogle Scholar
  19. [19]
    Wang, W. P.: Saltation cylinder phenomena: the moire fringe technique. M. S. Thesis, Iowa State University, Ames (1989).Google Scholar
  20. [20]
    Ostrowski, J. S., Marshall, R. D., Cermak, J. E.: Vortex formation and pressure fluctuations on buildings. Proceedings, International Seminar on Wind Effects on Buildings and Structures, vol. 1. University of Toronto Press, pp. 459–484 (1971).Google Scholar
  21. [21]
    Iversen, J. D., Wang, W. P., Rasmussen, K. R., Mikkelsen, H. E., Hasiuk, J. F., Leach, R. N.: The effect of a roughness element on local saltation transport. Proceedings of the sixth U.S. National Conference on Wind Engineering (A. Kareem, ed.) A6–1 to A6–10 (1989).Google Scholar
  22. [22]
    Greeley, R., Iversen, J. D.: Measurements of wind friction speeds over lava surfaces and assessment of sediment transport. Geophys. Res. Lett. 9, 925–928 (1987).CrossRefGoogle Scholar
  23. [23]
    Ng, J. Y.-T.: The structure of the turbulent flow at the test section of BLWT II, ES400, Project Report, University of Western Ontario (1986).Google Scholar
  24. [24]
    Lettau, H.: Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J. Appl. Meteorol. 8, 828–832 (1969).CrossRefGoogle Scholar
  25. [25]
    White, B. R.: Private communication (1989).Google Scholar
  26. [26]
    Boundy, B., Leach, R.: The effect of surface roughness on flux and threshold velocity of 145 micron sand at atmospheric and Martian pressures. Informal report, NASA, Ames Research Center (1989).Google Scholar
  27. [27]
    Mason, P. J., Morton, B. R.: Trailing vortices in the wakes of surface mounted obstacles. J. Fluid Mech. 175, 247–293 (1987).CrossRefGoogle Scholar
  28. [28]
    Gillette, D. A., Stockton, P. H.: The effect of nonerodible particles on wind erosion of erodible surfaces. J. Geophys. Res. 94,12885-12893 (1989).Google Scholar
  29. [29]
    Simiu, E., Scanlan, R. H.: Wind effects on structures. New York: John Wiley, p. 137 (1978).Google Scholar
  30. [30]
    Rae, W. H., Pope, A. Y.: Low-speed wind tunnel testing. New York: John Wiley, p. 167 (1984)Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • J. D. Iversen
    • 1
  • W. P. Wang
    • 1
  • K. R. Rasmussen
    • 2
  • H. E. Mikkelsen
    • 3
  • R. N. Leach
    • 4
  1. 1.Aerospace EngineeringIowa State UniversityAmesUSA
  2. 2.Geologisk InstitutAarhus UniversitetAarhusDenmark
  3. 3.Department of AgrometeorologyResearch center, FoulumTjeleDenmark
  4. 4.NASA-Ames Research Center, Moffett FieldUSA

Personalised recommendations