Advertisement

Cross-shore selective sorting processes and grain size distributional shape

  • D. Hartmann
Part of the Acta Mechanica Supplementum book series (ACTA MECH.SUPP., volume 2)

Summary

Applying the population concept on more than a thousand beach sand samples from the southern Israeli Mediterranean coast allowed abandonment of the common single sample approach. The study suggests six distinct grain size populations related to a sequence of six beach environments, entitled: 0. and 1. inshore; 2. step; 3. mid-swash zone; 4. top-swash zone; 5. backshore; 6. and D. farbackshore wind blown sand and coastal dunes. The invariant hyperbolic shape parameter Q indicates a gradual change of the grain-size distributional form across the left part of the hyperbolic shape triangle. The shape positions (χ, ξ) in the triangle suggest that the subaqueous populations are subjected mainly to - erosion-deposition processes and move along one of the upper ’hammock’ curves in the shape triangle. The subaerial populations were found to follow mainly ℵ-erosion-deposition processes and to move along the -0.6 to -0.7 Q lines. However, this group is divided into two basically different depositional environments: water-lain backshore populations dominated by the swash-backwash bidirectional sheet flow and wind-blown sand originating from the backshore sediments. The different grain-size populations reflect the sum of modes of transport which dictate the grain size cutoffs and the typical grain size, thus defining the shape of the distributions.

Keywords

Coastal Dune Shape Triangle Hyperbolic Distribution Hyperbolic Shape Beach Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Evans, O. F.: Sorting and transportation of material in the swash and backwash. J. Sed. Petrol. 9, 28–31 (1939).Google Scholar
  2. [2]
    Miller, R. L., Zeigler, J. M.: A model relating dynamics and sediment pattern in equilibrium in the region of shoaling waves, breaker zone, and foreshore. J. Geol. 66, 417–441 (1958).CrossRefGoogle Scholar
  3. [3]
    Seibold, E.: Geological investigations of nearshore sand transport-examples of methods and problems from the Baltic and North seas. Progr. Oceanogr. 1, 3–70 (1963).CrossRefGoogle Scholar
  4. [4]
    Schiffman, A.: Energy measurements in the swash-surf zone. Limmol. Oceanog. 10, 255–260 (1965).CrossRefGoogle Scholar
  5. [5]
    Fox, W. T., Ladd, J. W., Martin, M. K.: A profile of the four moment measures perpendicular to a shore line, South Haven, Michigan. J. Sed. Petrol. 36, 1126–1130 (1966).Google Scholar
  6. [6]
    Ingle, J. C.: The movement of beach sand. Amsterdam: Elsevier 1966.Google Scholar
  7. [7]
    Greenwood, B., Davidson-Arnott, R. G. D.: Textural variation in subenvironments of the shallow-water wave zone, Kouchibouguac Bay, New Brunswick. Canad. J. Earth Sc. 9, 679 to 688 (1972).Google Scholar
  8. [8]
    Bryant, E. A.: Relationship between foreshore sediment settling velocity and breaker wave hydrodinamics, eastern Australian beaches. Ph. D. thesis (unpub.), Macquarie University, Australia 1977.Google Scholar
  9. [9]
    Komar, P. D.: Beach processes and sedimentation. Englewood Cliffs, N. J.: Prentice-Hall 1976.Google Scholar
  10. [10]
    Bluck, B. J.: Sedimentation of beach gravels: examples from south Wales. J. Sed. Petrol. 37, 128–156 (1967).Google Scholar
  11. [11]
    Pranzini, E.: Random changes in beach sand grain-size parameters. Boll. Soc. Geol. It. 102, 177–189 (1983).Google Scholar
  12. [12]
    Sedimentation Seminar: Comparison of methods of size analysis for sands of the Amazon-Solimoes Rivers, Brazil and Peru. Sedimentology 28, 123–128 (1981).CrossRefGoogle Scholar
  13. [13]
    Gibbs, R. J.: A settling tube system for sand-size analysis. J. Sed. Petrol. 44,583–588 (1974).Google Scholar
  14. [14]
    Geldof, H. J., Slot, R. E.: Settling tube analysis of sand. Internal Report, Dep. Civil Eng. Delft University 4-79, 1–31 (1979).Google Scholar
  15. [15]
    Hartmann, D.: Coastal sands of the southern part of the Meditarranean coast of Israel: reflections of dynamic sorting processes and environmental discrimination. Ph. D. Thesis (unpub.), Aarhus, Denmark 1988a.Google Scholar
  16. [16]
    Kachholz, K. D.: Statistische Bearbeitung von Probendaten aus Vorstrandbereichen sandiger Brandungsküsten mit verschiedener Intensität der Energieumwandlung. Ph. D. Thesis (unpub.), Kiel, Germany 1982.Google Scholar
  17. [17]
    Krumbein, W. C., Graybill, F. A.: An introduction to statistical models in geology. McGraw-Hill, 1965.Google Scholar
  18. [18]
    Russell, R. J.: Where most grains of very coarse sand and fine gravel are deposited. Sedimentology 11,31–38 (1968).CrossRefGoogle Scholar
  19. [19]
    Shea, J. H.: Deficiencies of clastic particles of certain sizes. J. Sed. Petrol. 44, 985–1003 (1974).Google Scholar
  20. [20]
    Barndorff-Nielsen, O. E., Christiansen, C., Hartmann, D.: Distributional shape triangles with some applications in sedimentology. Acta Mechanica [Suppl. 2]; 37–47 (1991).Google Scholar
  21. [21]
    Mayo, W.: A computer program for calculating statistical parameters of grain-size distributions derived from various analytical methods. B. M. R. Rec. (unpub.) 140, 1–23 (1972).Google Scholar
  22. [22]
    Goldbery, R., Tehori, O.: SEDPAK-a comprehensive operational system and data-processing package in APPLESOFT BASIC for a settling tube, sediment analyzer. Comput. Geosci. 13, 565–585 (1987).CrossRefGoogle Scholar
  23. [23]
    Reed, W. E., LeFever, R., Moir, G. J.: Depositional environment interpretation from settling-velocity (Psi) distributions. Geol. Soc. Am. Bull. 86, 1321–1328 (1975).CrossRefGoogle Scholar
  24. [24]
    May, J. P.: Chi (χ): a proposed standard parameter for settling tube analysis of sediments. J. Sed. Petrol. 51, 607–610 (1981).Google Scholar
  25. [25]
    Bryant, E. A.: Sample site variation in settling velocity distribution subpopulations using curve dissection analysis. Sedimentology 33, 767–775 (1986).CrossRefGoogle Scholar
  26. [26]
    Christansen, C., Hartmann, D.: SAHARA: a package of PC programs for estimating both loghyperbolic grain-size parameters and standard moments. Comput. Geosci. 14, 557–625 (1988a).CrossRefGoogle Scholar
  27. [27]
    Jensen, J. L.: Maximum likelihood estimation of the hyperbolic parameters from grouped observations. Comput. Geosci. 14, 1–38 (1988).CrossRefGoogle Scholar
  28. [28]
    Hartmann, D., Christiansen, C.: The hyperbolic shape triangle as a tool for discrimination of populations of sediment samples from closely connected origin. Math. Geology, submitted (1990).Google Scholar
  29. [29]
    Barndorff-Nielsen, O. E., Blæsild, P., Jensen, J. L., Sørensen, M.: The fascination of sand. In: A celebration of statistics. Centenary Volume of the International Statistical Institute. New York: Springer 1985.Google Scholar
  30. [30]
    Barndorff-Nielsen, O. E., Blæsild, P.: Hyperbolic distributions and ramifications: contributions to theory and applications. Statistical distribution in scientific work. Dordrecth: D. Reidel Publ. Co. 1981.Google Scholar
  31. [31]
    Bagnold, R. A., Barndorff-Nielsen, O.: The pattern of natural size distribution. Sedimentology 27, 199–207 (1980).CrossRefGoogle Scholar
  32. [32]
    Barndorff-Nielsen, O. E., Christiansen, C.: Erosion, deposition and size distributions of sand. Proc. R. Soc. Lond. A 417, 335–352 (1988).MathSciNetGoogle Scholar
  33. [33]
    Barndorff-Nielsen, O. E., Sørensen, M.: On the temporal-spatial variation of sediment size distributions. Acta Mechanica [Suppl. 2]; 23–35 (1991).Google Scholar
  34. [34]
    McKee, E. D.: A study of global sand seas. Geological survey professional pap., Washington 1979.Google Scholar
  35. [35]
    Hartmann, D., Christiansen, C.: Settling-velocity distributions and sorting processes on a longitudinal dune: a case study. Earth. Surf. Proc. Landforms 13, 649–656 (1988).CrossRefGoogle Scholar
  36. [36]
    Inman, D. L.: Measures for describing the size distribution of sediments. J. Sed. Petrol. 22, 125 to 145 (1952).Google Scholar
  37. [37]
    Jones, T. A.: Comparisons of the descriptions of sediment grain-size distributions. J. Sed. Petrol. 40, 1204–1215 (1970).Google Scholar
  38. [38]
    Dapples, E. C.: Laws of distribution applied to sand sizes. G. S. A. Memoir 142, 37–61 (1975).Google Scholar
  39. [39]
    LeRoy, S. D.: Grain-size and moment measures: a new look at Karl Person’s ideas on distributions. J. Sed. Petrol. 51, 625–630 (1981).Google Scholar
  40. [40]
    Christiansen, C., Blæsild, P., Dalsgaard, K.: Re-interpreting’ segmented’ grain-size corves. Geol. Mag. 121, 47–51 (1984).CrossRefGoogle Scholar
  41. [41]
    Christiansen, C., Hartmann, D.: On using the log-hyperbolic distribution to describe the textural characteristics of aeolian sediments-Discussion. J. Sed. Petrol. 58, 159–160 (1988b).Google Scholar
  42. [42]
    Hartmann, D.: The goodness-of-fit to ideal Gauss and Rosin distribution: a new grain-size parameter-Discussion. J. Sed. Petrol. 58, 913–917 (1988b).MathSciNetGoogle Scholar
  43. [43]
    Vincent, P.: Differentiation of modern beach and coastal dune sands-a logistic regression approach using the parameters of the hyperbolic function. Sed. Geol. 49,167–176 (1986).CrossRefGoogle Scholar
  44. [44]
    Passega, R.: Grain size representation by CM patterns as a geological tool. J. Sed. Petrol. 34, 830–847 (1964).Google Scholar
  45. [45]
    Visher, G. S.: Grain-size distribution and depositional processes. J. Sed. Petrol. 39, 1074–1106 (1969).Google Scholar
  46. [46]
    Kennedy, S. K., Ehrlich, R., Kana, T. W.: The non-normal distribution of intermittent suspension sediments below breaking waves. J. Sed. Petrol. 51, 1103–1108 (1981).Google Scholar
  47. [47]
    Kolmer, J. R.: A wave tank analysis of the beach foreshore grain size distribution. J. Sed. Petrol. 43, 200–204 (1973).Google Scholar
  48. [48]
    Middleton, G. V.: Hydraulic interpretation of size distributions. J. Geol. 84, 405–426 (1976).CrossRefGoogle Scholar
  49. [49]
    Bridge, J. S.: Hydraulic interpretation of grain-size distributions using a physical model for bedload transport. J. Sed. Petrol. 51,1109–1124 (1981).Google Scholar
  50. [50]
    Hartmann, D.: Swash-zone sediment dynamics in the light of the population concept and thehyperbolic model. (In preparation) (1991).Google Scholar
  51. [51]
    Liu, J. T., Zarillo, G. A.: Distribution of grain sizes across a transgressive shoreface. Marine Geol. 87,121–136 (1989).CrossRefGoogle Scholar
  52. [52]
    Duane, D. B.: Synoptic observations of sand movement. Proc. Coastal Eng. Conf. 12th (1970).Google Scholar
  53. [53]
    Hartmann, D.: Cross-shore sorting differentiation processes dominating a beach-dune system. 13th International Sedimentological Congress (abs.), 215 (1990).Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • D. Hartmann
    • 1
  1. 1.National Institute of OceanographyIsrael Oceanographic and Limnological ResearchHaifaIsrael

Personalised recommendations