Advertisement

Distributional shape triangles with some applications in sedimentology

  • O. E. Barndorff-Nielsen
  • C. Christiansen
  • D. Hartmann
Part of the Acta Mechanica Supplementum book series (ACTA MECH.SUPP., volume 2)

Summary

The location-scale invariant parameters χ and ξ of the hyperbolic distribution have a triangular domain of variation which is referred to as the hyperbolic shape triangle. There are close analogies between the hyperbolic distributions, the generalized logistic distributions and the beta distributions, which make it possible also to define a logistic or a beta shape triangle.

Using a population concept of sediment samples it is shown that both the hyperbolic shape triangle and the beta shape triangle provide useful information on variations of grain size distributions, in cross-shore transects. This information can be related to the process-oriented erosion/deposition model developed previously in connection with the hyperbolic shape triangle.

Keywords

Grain Size Distribution Beta Distribution Littoral Environment Invariant Parameter Swash Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barndorff-Nielsen, O. E.: Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. A 353, 401–419 (1977).CrossRefGoogle Scholar
  2. [2]
    Barndorff-Nielsen, O. E.: Sorting, texture and structure. Proc. R. Soc. Edinburgh 96 B, 167–179 (1989).Google Scholar
  3. [3]
    Barndorff-Nielsen, O. E., Blæsild, P.: Hyperbolic distributions and ramifications: contributions to theory and applications. In: Statistical distributions in scientific work, vol. 4. (Taillie, C., Patil, G. P., Baldessari B. A.,) pp. 19–44, Dordrecht: D. Reidel, (1981).CrossRefGoogle Scholar
  4. [4]
    Barndorff-Nielsen, O. E., Bloosild, P., Jensen. J. L., Sørensen, M.: The fascination of sand. In: A celebration of statistics. (Atkinson, A. C., Fienberg, S. E., eds.) pp. 57–87 New York: Springer (1985).CrossRefGoogle Scholar
  5. [5]
    Barndorff-Nielsen, O. E., Christiansen, C.: Erosion, deposition and size distributions of sand. Proc. R. Soc. London A 417, 335–352 (1988).MathSciNetCrossRefGoogle Scholar
  6. [6]
    Barndorff-Nielsen, O. E., Kent, J., Sørensen, M.: Normal variance-mean mixtures and z distributions. Internat. Statist. Rev. 50, 145–159 (1982).MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Barndorff-Nielsen, O. E., Sørensen, M.: On the temporal-spatial variation of sediment size distributions. Acta Mechanica [Suppl. 2], 23–35 (1991).Google Scholar
  8. [8]
    Blatt, H., Middleton, G., Murray, R.: Origin of sedimentary rocks. 634 pp. Englewood Cliffs, N. J.: Prentice-Hall (1972).Google Scholar
  9. [9]
    Bowman, D., Christiansen, C., Magaritz, M.: Late-Holocene coastal evolution in the Hansthol-mHjardemaal region, NW Denmark. Morphology, sediments and dating. Geogra. Tidss. 89, 49–57 (1989).Google Scholar
  10. [10]
    Bryant, E. A.: Sample size variation in settling velocity distribution subpopulations using curve dissection analysis. Sedimentology 33,767–775 (1986).CrossRefGoogle Scholar
  11. [11]
    Christiansen, C., Hartmann, D.: SAHARA: a package of PC computer programs for estimating both log-hyperbolic grain size parameters and standard moments. Comp. Geosci. 14, 557–625 (1988).CrossRefGoogle Scholar
  12. [12]
    Christiansen, C., Hartmann, D.: The hyperbolic distribution. In: Principles, methods and application of particle size analysis. (Syvitski, J. P. M., ed.) Cambridge University Press. (In press) (1990).Google Scholar
  13. [13]
    Fox, W. T., Ladd, J. W., Martin, M. K.: A profile of the four moment measures perpendicular to a shore line, South Haven, Michigan. J. Sed. Petrol. 36, 1126–1130 (1966).Google Scholar
  14. [14]
    Goldbery, R., Tehori, O.: SEDPAK-a comprehensive operational system and data-processing package in APPLESOFT BASIC for a settling tube, sediment analyzer. Comp. Geosci. 13, 565–585 (1987).CrossRefGoogle Scholar
  15. [15]
    Greenwood, B.: Sediment parameters and environment discrimination: an application of multivariate statistics. Can. J. Earth Sci. 6,1347–1358 (1969).Google Scholar
  16. [16]
    Hartmann, D.: Coastal sands of the sourthern and central part of the Meditterranean coast of Israel-reflection of dynamic sorting processes. Ph. D. Thesis, Faculty of Science, Aarhus University. 335 pp. (1988).Google Scholar
  17. [17]
    Hartmann, D.: Cross-shore selective sorting processes and grain size distributional shape. Acta Mechanica [Suppl. 2]; 49–63 (1991).Google Scholar
  18. [18]
    Hartmann, D., Christiansen, C.: Settling velocity distributions and sorting processes on a longitudinal dune: a case study. Earth Surf. Proc. Landf. 13, 649–656 (1988).CrossRefGoogle Scholar
  19. [19]
    Hobday, D. K., Horne, A. R.: The Port Dunford Formation: a major Pleistocene barrier lagoon complex along the Zululand coast. Trans. Geol. Soc. South Africa 77, 141–149 (1974).Google Scholar
  20. [20]
    Mason, C. C., Folk, R. L.: Differentiation of beach, dune and eolian flat environments by size analysis, Mustang Island, Texas. J. Sed. Petrol. 28, 211–226 (1958).Google Scholar
  21. [21]
    McLaren, P.: An interpretation of trends in grain size measures. J. Sed. Petrol. 51, 611–624 (1981).Google Scholar
  22. [22]
    Miller, R. L.: A model for the analysis of environments of sedimentation. J. Geol. 62,108–113 (1954).CrossRefGoogle Scholar
  23. [23]
    Otto, C. H.: The sedimentation unit and its use in field sampling. J. Geol. 46, 569–582 (1938).CrossRefGoogle Scholar
  24. [24]
    Reed, W. E., LeFever, R., Moir, G. J.: Depositional environment interpretation from settling velocity (Psi) distributions. Geol. Soc. Am. Bull. 86, 1321–1328 (1975).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • O. E. Barndorff-Nielsen
    • 1
  • C. Christiansen
    • 2
  • D. Hartmann
    • 3
  1. 1.Department of Theoretical StatisticsInstitute of MathematicsDenmark
  2. 2.Department of Earth SciencesAarhus UniversityAarhus CDenmark
  3. 3.Israel Oceanographic and Limnological Research Ltd.HaifaIsrael

Personalised recommendations