Skip to main content

Is There any Future for Robots in Neurosurgery?

  • Chapter

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 18))

Abstract

Since the first conception of machines that could replace humans for tasks they used to perform, the development of increasingly intelligent machines, later called robots, led to the science of synnoetics’ implying the perfect integration of humans and robots in an harmonious society. Science-fiction literature has helped us grow accustomed to the idea and the theme of mankind threatened by dominating robotic creatures has rapidly gone out of style. The prospect of an increasingly robotized society is becoming more acceptable and the recent experience of robots entering the exclusivedomain of medicine has proven that they are regarded as an addition to skill and safety rather than as a danger. Incredibly rapid progress in computer science, artificial intelligence, biomedical engineering and medical imaging, together with our society’s never ending pursuit of higher medical standards and achievements willundoubtedly foster advancements in medical robotics far beyond the scope of present-day capabilities. However, before a time has come when intelligent and flexible robots will be able to integrate the sum of clinical and paraclinical data, state a diagnosis, make a decision, and then perform a therapeutic (including surgical) procedure, not in a completely pre-programmed but in an adaptative manner based on the immediate knowledge provided by their own sensors, a considerable amount of work remains to be done well beyond the current state of the art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asimov I. (1950) I, Robot. Doubleday, New York

    Google Scholar 

  2. Bancaud J, Talairach J, Bonis A, Schaub C, Szikla G, Morel P, Bordas-Ferrer H (1965) La stéreo-électro-encéphalographic dans l’épilepsie. Masson, Paris

    Google Scholar 

  3. Benabid AL, Cinquin P, Lavallée S, Le Bas JF, Demongeot J, de Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan

    Google Scholar 

  4. Benabid AL, Chirossel JP, Mercier C, Louveau A, Passagia JG, Henry S, de Rougemont J, Vrousos C (1987) Removable, adjustable and reusable implants for stereotactic interstitial radiosurgery of brain tumours. Appl Neurophysiol 50: 278–280

    PubMed  CAS  Google Scholar 

  5. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamus nucleus for bilateral Parkinson disease. Appl Neurophysiol 50: 344–346

    PubMed  CAS  Google Scholar 

  6. Benabid AL, Pollak P, Hommel M, Gaio JM, de Rougemont J, Perret J (1989) Traitement du tremblement parkinsonien par stimulation chronique du noyau ventral intermediaire du Thalamus. Rev Neurol (Paris) 145: 320–323

    PubMed  CAS  Google Scholar 

  7. Benabid AL, Lavallée S, Hoffmann D, Cinquin P, Le Bas JF, Demongeot J (1991) The Talairach system. In: Kelly PJ (ed) Computers in stereotactic neurosurgery. Blackwell Scientific Publication, Cambridge (in press)

    Google Scholar 

  8. Benabid AL, Lavallée S, Hoffmann D, Cinquin P, Demongeot J, Danel F (1991) Computer driven robot for stereotactic neurosurgery. In: Kelly PJ (ed) Computers in stereotactic neurosurgery. Blackwell Scientific Publication, Cambridge (in press)

    Google Scholar 

  9. Benabid AL, Lavallée S, Hoffmann D, Cinquin P, Demongeot J, Danel F (1991) Potential use of robots in endoscopic neurosurgery. Acta Neurochir (Wien) (in press)

    Google Scholar 

  10. Berger MS (1986) Ultrasound-guided stereotaxic biopsy using a new apparatus. J Neurosurg 65: 550–554

    Article  PubMed  CAS  Google Scholar 

  11. Bouvier G, Saint Hilaire JM, Giard N, Lesage J, Cloutier L, Beique R (1987) Depth electrode implantation at Hospital Notre-Dame, Montreal. In: Engel J Jr (ed) Surgical treatment of the epilepsies. Raven Press, New York, pp 589–594

    Google Scholar 

  12. Brown RA (1979) A computerized tomography-computer graphics approach to stereotactic localization. J Neurosurg 50: 715–720

    Article  PubMed  CAS  Google Scholar 

  13. Camillerapp J, Leplumey J, Walter A (1987) Acquisition of a 3D model of the cranial vascular system from two stereoscopic pictures. AFCET; 16–20 Nov, 1987; Antibes

    Google Scholar 

  14. Cinquin P (1987) Application des fonctions splines au traitement d’images numériques. These d’etat de SciencesMathematiques; Université Joseph Fourier, Grenoble

    Google Scholar 

  15. Cloutier L, Nguyen DN, Ghosh S, Boulianne M, Labissonniere P, Bouvier G, Beique R (1985) Simulator allowing spatial viewing of cerebral probes by using a floating line concept. Symposium on optical and electro-optical applied science and Engineering. Cannes, France

    Google Scholar 

  16. Colombo F, Angrilli F, Zanardo A, Pinna V, Alexandre A, Benedetti A (1982) A universal method to employ CT scanner spatial information in stereotactic surgery. Appl Neurophysiol 45: 352–354

    PubMed  CAS  Google Scholar 

  17. Daumas-Duport C, Monsaingeon V, Szenthe L, Szikla G (1982) Serial stereotactic biopsies: a double histological code of gliomas according to malignancy and 3D configuration, as an aid to therapeutic decision and assessment of results. Appl Neurophysiol 45: 431–437

    PubMed  CAS  Google Scholar 

  18. Denavit J, Hartenberg RS, Evanston ILL (1955) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 55: 215–221

    Google Scholar 

  19. Doll J, Schlegel W, Pastyr O, Sturm V, Maier-Borst W (1987) The use of an industrial robot as a stereotactic guidance system. CAR’ 79: 374–378

    Google Scholar 

  20. Gildenberg PL (1987) Whatever happened to stereotactic surgery? Neurosurg 20: 983–987

    Article  CAS  Google Scholar 

  21. Gildenberg PL. Kaufmann HH, Krishna Murthy KS (1982) Calculation of stereotactic coordinates from the computed tomographic scan. Appl Neurophysiol 45: 443–448

    Google Scholar 

  22. Glauser D, Flury P, Durr P, Funakubo H, Burckhardt CW, Favre J, Schnyder P, Fankhauser H (1990) Configuration of a robot dedicated to stereotactic surgery. Stereotactic and Functional Neurosurgery 54 + 55: 468–470

    Article  PubMed  Google Scholar 

  23. Goerss SJ, Kelly PJ, Kall BA, Alker GJ (1982) A computed tomographic stereotactic adaptation system. Neurosurgery 10: 375–379

    Article  PubMed  CAS  Google Scholar 

  24. Gremban KD, Thorpe CE, Kanade T (1988) Geometric camera calibration using systems of linear equations. Proc IEEE of Int Conf on Robotics and Automation, Philadelphia, pp 947–951

    Google Scholar 

  25. Gutin PH, Phillips TL, Wara WM, Leibel SA, Hosobuchi Y, Leven VA, Weaver KA, Lamb S (1984) Brachytherapy of recurrent malignant brain tumours with removable high activity iodine-125 sources. J Neurosurg 60: 61–68

    Article  PubMed  CAS  Google Scholar 

  26. Horsley VA, Clarke RH (1905) On the intrinsic fibers of the cerebellum, its nuclei and its effect tracts. Brain 28: 12–29

    Article  Google Scholar 

  27. Iseki H, Amano K (1985) CT-guided stereotactic surgery in combination with intra-operative monitoring by sector type ultrasonography. Asian Med J 28: 157–167

    Google Scholar 

  28. Kall BA, Kelly PJ, Goerss SJ (1985) Interactive stereotactic surgery system for the removal of intracranial tumours utilizing the CO2 laser and the CT-derived database. IEEE Trans Biomed Eng 32: 112–116

    Article  PubMed  CAS  Google Scholar 

  29. Kall BA, Kelly PJ, Goerss SJ, Earnest F (1985) IV. Cross-registration of points and lesions volumes from MR and CT. Proceed. 7° annual meeting of frontiers of engineering and computing in health care, pp 935–942

    Google Scholar 

  30. Kall BA, Kelly PJ, Goerss SJ, Frieder G (1985) Methodology and clinical experience with computed tomography and a computer-resident stereotactic atlas. Neurosurgery 17: 400–407

    Google Scholar 

  31. Kall BA, Kelly PJ, Goerss S (1987) Comprehensive computer assisted data collection treatment planning and interactive surgery. Proceed. SPIE, Medical imaging 767: 509–514

    Google Scholar 

  32. Kelly PJ (1986) Technical approaches to identification and stereotactic reduction of tumour burden. In: Walker MD, Thomas DGT (eds) Biology of brain tumour. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 237–343

    Google Scholar 

  33. Kelly PJ (1988) Volumetric stereotactic surgical resection of intraaxial brain mass lesions. Mayo Clinic Proc 63: 1186–1198

    CAS  Google Scholar 

  34. Kelly PJ, Alker GJ (1980)A method for stereotactic laser microsurgery in the treatment of deep seated CNS neoplasms. Appl Neurophysiol 43: 210–215

    PubMed  CAS  Google Scholar 

  35. Kelly PJ, Alker GJ (1981) A stereotactic approach to deep-seated central nervous system. Surg Neurol 15: 331–335

    Article  PubMed  CAS  Google Scholar 

  36. Kelly PJ, Alker GJ, Goerss S (1982) Computer assisted stereotactic laser microsurgery for the treatment of intracranial neoplasms. Neurosurgery 10: 324–331

    Article  PubMed  CAS  Google Scholar 

  37. Kelly PJ, Kall B, Goerss S, Alker GJ (1983) Precision resection of intraaxial CNS lesions by CT-based stereotactic craniotomy and computer monitored CO2 laser. Acta Neurochir (Wien) 68: 1–9

    Article  CAS  Google Scholar 

  38. Kelly PJ, Kall BA, Goerss SJ (1984) Transposition of volumetric information derived from computed tomography scanning into stereotactic space. Surg Neurol 21: 465–471

    Article  PubMed  CAS  Google Scholar 

  39. Kelly PJ, Alker GJ, Kall B, Goerss S (1984) Method ofcomputed-tomography based stereotactic biopsy with arteriographic control. Neurosurgery 14: 172–177

    Article  PubMed  CAS  Google Scholar 

  40. Kelly PJ, Kall BA, Goerss S, Earnest F (1985) Present and future developments of stereotactic technology. Appl Neurophysiol 48: 1–6

    PubMed  CAS  Google Scholar 

  41. Kelly PJ, Earnest F, Kall BA (1986) Surgical options for patients with deepseated brain tumours: computer-assisted stereotactic biopsy. Mayo Clin Proc 6: 223–229

    Google Scholar 

  42. Kosugi Y, Watanabe E, Goto J, Watanabe T, Yoshimoto S, Takakura K, Ikebe J (1988) An articulated neurosurgical navigation system using MRI and CT images. IEEE Trans Biomed Eng 35: 147–152

    Article  PubMed  CAS  Google Scholar 

  43. Kwoh YS, Reed IS, Chen JY, Shao HM, Truong TK, Jonckheere EA (1985) New computerized tomographic-aided robotic stereotaxis system. Robotics Age 7: 17–22

    Google Scholar 

  44. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35: 153–160

    Article  PubMed  CAS  Google Scholar 

  45. Kwoh YS, Young R (1991) Robotic aided surgery. In: Kelly PJ (ed) Computers in stereotactic neurosurgery. Blackwell Scientific Publication, Cambridge (in press)

    Google Scholar 

  46. Lavallée S (1989) Gestes médico-chirurgicaux assistes par ordinateur. Thése Sciences Mathématiques, Université Joseph Fourier, Grenoble

    Google Scholar 

  47. Masuzawa H, Kamitani H, Sator J (1981) Intraoperative application of sector scanning electronic ultrasound in neurosurgery. Neurol Med Chir (Tokyo) 21: 277–285

    Article  CAS  Google Scholar 

  48. Munari C, Betti O (1989) The stereotactic biopsy of brain lesions: a critical review. In: Broggi G, Gerosa MA (eds) Cerebral gliomas. Elsevier Science Publishers, Amsterdam New York Oxford, pp 179–206

    Google Scholar 

  49. Mundinger F, Birg W, Klar M (1978) Computer-assisted stereotactic brain operations by means including computerized axial tomography. Appl Neurophysiol 41: 169–182

    PubMed  CAS  Google Scholar 

  50. Nguyen JP, Van Effentere R, Fohanno D, Robert G, Sichez JF, Gardeur D (1980) Methode pratique de repérage spatial des petites néoformations intra-crâniennes à partir des données de la tomo-densito-métrie, Neurochirurgie

    Google Scholar 

  51. Oliver A (1986) Double-headed stereotaxic carrier apparatus for insertion of depth electrodes. J Neurosurg 65: 258–259

    Article  Google Scholar 

  52. Ostertag CB, Mennel HD, Kiessling M (1980) Stereotactic biopsy of brain tumours. Surg Neurol 14: 275–283

    PubMed  CAS  Google Scholar 

  53. Perry JH, Rosenbaum AE, Junsford LD, Swink CA, Zorub DS (1980) Computed tomography-guided stereotactic surgery; Conception and development of a new stereotactic methodology. Neurosurgery 7: 376–381

    Article  PubMed  CAS  Google Scholar 

  54. Peters TM, Clark JA, Oliver A, Marchand EP, Mawko G, Dieumegarde M, Muresan LV (1986) Integrated stereotaxic imaging with CT, MR imaging, and digital subtraction angiography. Radiology 161: 821–826

    PubMed  CAS  Google Scholar 

  55. Picard C, Olivier A, Bertrand G (1983) The first human stereotaxic apparatus. The contribution of Aubrey Mussen to the field of stereotaxis. J Neurosurg 59: 673–676

    Article  PubMed  CAS  Google Scholar 

  56. Roberts DW, Strohbehn JW, Hatch JH, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65: 545–549

    Article  PubMed  CAS  Google Scholar 

  57. Roth ZS, Mooring BW, Ravani B (1987) An overview of robot calibration. IEEE J Rob Automat 3: 377–385

    Article  Google Scholar 

  58. Scerrati M, Fiorentino A, Fiorentino M, Pola P (1984) Stereotaxic device for polar approaches in orthogonal systems. Technical note. J Neurosurg 61: 1146–1147

    Article  PubMed  CAS  Google Scholar 

  59. Schad L, Lott S, Schmitt F, Sturm V, Lorenz WJ (1987) Correction of spatial distortion in MR imaging: a prerequisite for accurate stereotaxy. J Comput Assist Tomogr 11: 499–505

    Article  PubMed  CAS  Google Scholar 

  60. Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain, 2nd edition. G Thieme, Stuttgart

    Google Scholar 

  61. Sedan R, Duparet R (1968) Stéréomètre adaptable au cadre stéréotaxique de J Talairach. Neurochirurgie 14: 577–582

    PubMed  CAS  Google Scholar 

  62. Sedan R, Peragut JC, Farnarier Ph, Vallicioni PA (1987) Imagerie moderne et stéreotaxic. Neurochirurgie 33: 29–32

    PubMed  CAS  Google Scholar 

  63. Smets C, Vandermeulen D, Suetens P, Oosterlinck A (1989) A knowledgebased system for the 3D reconstruction and representation of the cerebral blood vessels from a pair of stereoscopic angiograms. Proceedings SPIE 1092, Medical Imaging III, pp 130–138

    Google Scholar 

  64. Spiegel EA, Wycis HT, Marks M, Lee A (1947) Stereotactic apparatus for operations on the human brain. Science 57: 164–167

    Google Scholar 

  65. Steinmetz H, Furst G, Freund HJ (1989) Cerebral cortical localization: application and validation of the proportional grid system in MR imaging. J Comput Assist Tomogr 13: 10–19

    Article  PubMed  CAS  Google Scholar 

  66. Suetens P, Jansen P (1983) 3D reconstruction of the blood vessels of the brain from a stereoscopic pair of substraction angiograms. Image and vision computing 1: 43–51

    Article  Google Scholar 

  67. Szikla G, Peragut JC (1975) Irradiation interstitielle des gliomes. In: Constans JP, Schlienger M (eds) Radiothérapie des tumeurs du systeme nerveux central. Neurochirurgie [Suppl] 21: 187–228, Masson, Paris

    Google Scholar 

  68. Szikla G, Bouvier G, Hori T (1975) Localization of brain sulci and convolutions by arteriography. A stereotactic anatomo-radiological study. Brain Res 95: 497–502

    Article  PubMed  CAS  Google Scholar 

  69. Szikla G, Bouvier F, Hori T, Petrov V (1977) Angiography of the human brain cortex. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  70. Taren J, Guiot G, Derome P, Trigo JC (1968) Hazards of stereotaxic thalamotomy. Added safety factors in corroborating X-ray target localization with neurophysiological methods. J Neurosurg 29: 173–182

    CAS  Google Scholar 

  71. Talairach J, Ajuriaguerra J de David M (1950) A propos des coagulations thérapeutiques sous-corticales. Étude topographique du système ventriculaire en fonction des noyaux gris centraux. Presse Méd 58: 697–701

    PubMed  CAS  Google Scholar 

  72. Talairach J, Ajuriaguerra J de David M (1952) Études steréotaxiques des structures encéphaliques profondes chez l’homme. Technique, intérêt physiologique et thérapeutique. Presse Med 60: 605–609

    PubMed  CAS  Google Scholar 

  73. Talairach J, David M, Tournoux P, Corredor H, Kvasina T (1957) Atlas d’anatomie stéreotaxique des noyaux gris centraux. Masson, Paris

    Google Scholar 

  74. Talairach J, Szikla G, Tournoux P, Prossolentis A, Bordas-Ferrer M, Covello L, Jacob M, Mempel E (1967) Atlas d’anatomie stereotaxique du telencephale. Masson, Paris

    Google Scholar 

  75. Tasker RR, Organ LW, Hawrylyshyn P (1982) Investigation on the surgical target for alleviation of involuntary movement disorders. Appl Neurophysiol 45: 261–274

    PubMed  CAS  Google Scholar 

  76. Tsutsumi Y, Andoh Y, Inoue N (1982) Ultrasound-guided echo biopsy for deep-seated brain tumours. J Neurosurg 57: 164–167

    Article  PubMed  CAS  Google Scholar 

  77. Venaille C, Mischler D, Coatrieux JL, Catros JY (1989) Reconstruction 3D de reseaux vasculaires en angiographie. Proc. 7° Congress AFCET-RFIA, Paris, pp 1533–1547

    Google Scholar 

  78. Vidal P, Hache JC, Hayat S, Guerrouad A, Ben Gayed M, Lepers B (1988) Un microtélémanipulateur chirurg ical applicable en neurologie et en ophtalmologie. Congrès IIRIAM, Marseille. Productique Hospitalière

    Google Scholar 

  79. Wyper DJ, Turner JW, Patterson J, Condon BR, Grossart KWM, Jenkins A, Hadley DM, Rowan JO (1986) Accuracy of stereotactic localisation using MRI and CT. J Neurol Neurosurg Psychiatry 49: 1445–1448

    Article  PubMed  CAS  Google Scholar 

  80. Young RJ (1987) Application of robotics to stereotactic neurosurgery. Neurol Res 9: 123–128

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Wien

About this chapter

Cite this chapter

Benabid, A.L. et al. (1991). Is There any Future for Robots in Neurosurgery?. In: Symon, L., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 18. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6697-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6697-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7385-5

  • Online ISBN: 978-3-7091-6697-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics