Advertisement

Is There any Future for Robots in Neurosurgery?

  • A. L. Benabid
  • D. Hoffmann
  • S. Lavallee
  • P. Cinquin
  • J. Demongeot
  • J. F. Le Bas
  • F. Danel
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 18)

Abstract

Since the first conception of machines that could replace humans for tasks they used to perform, the development of increasingly intelligent machines, later called robots, led to the science of synnoetics’ implying the perfect integration of humans and robots in an harmonious society. Science-fiction literature has helped us grow accustomed to the idea and the theme of mankind threatened by dominating robotic creatures has rapidly gone out of style. The prospect of an increasingly robotized society is becoming more acceptable and the recent experience of robots entering the exclusivedomain of medicine has proven that they are regarded as an addition to skill and safety rather than as a danger. Incredibly rapid progress in computer science, artificial intelligence, biomedical engineering and medical imaging, together with our society’s never ending pursuit of higher medical standards and achievements willundoubtedly foster advancements in medical robotics far beyond the scope of present-day capabilities. However, before a time has come when intelligent and flexible robots will be able to integrate the sum of clinical and paraclinical data, state a diagnosis, make a decision, and then perform a therapeutic (including surgical) procedure, not in a completely pre-programmed but in an adaptative manner based on the immediate knowledge provided by their own sensors, a considerable amount of work remains to be done well beyond the current state of the art.

Keywords

Stereotactic Biopsy Guide Tube Stereotactic Frame Stereotactic Surgery Digitize Substraction Angiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asimov I. (1950) I, Robot. Doubleday, New YorkGoogle Scholar
  2. 2.
    Bancaud J, Talairach J, Bonis A, Schaub C, Szikla G, Morel P, Bordas-Ferrer H (1965) La stéreo-électro-encéphalographic dans l’épilepsie. Masson, ParisGoogle Scholar
  3. 3.
    Benabid AL, Cinquin P, Lavallée S, Le Bas JF, Demongeot J, de Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scanGoogle Scholar
  4. 4.
    Benabid AL, Chirossel JP, Mercier C, Louveau A, Passagia JG, Henry S, de Rougemont J, Vrousos C (1987) Removable, adjustable and reusable implants for stereotactic interstitial radiosurgery of brain tumours. Appl Neurophysiol 50: 278–280PubMedGoogle Scholar
  5. 5.
    Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamus nucleus for bilateral Parkinson disease. Appl Neurophysiol 50: 344–346PubMedGoogle Scholar
  6. 6.
    Benabid AL, Pollak P, Hommel M, Gaio JM, de Rougemont J, Perret J (1989) Traitement du tremblement parkinsonien par stimulation chronique du noyau ventral intermediaire du Thalamus. Rev Neurol (Paris) 145: 320–323PubMedGoogle Scholar
  7. 7.
    Benabid AL, Lavallée S, Hoffmann D, Cinquin P, Le Bas JF, Demongeot J (1991) The Talairach system. In: Kelly PJ (ed) Computers in stereotactic neurosurgery. Blackwell Scientific Publication, Cambridge (in press)Google Scholar
  8. 8.
    Benabid AL, Lavallée S, Hoffmann D, Cinquin P, Demongeot J, Danel F (1991) Computer driven robot for stereotactic neurosurgery. In: Kelly PJ (ed) Computers in stereotactic neurosurgery. Blackwell Scientific Publication, Cambridge (in press)Google Scholar
  9. 9.
    Benabid AL, Lavallée S, Hoffmann D, Cinquin P, Demongeot J, Danel F (1991) Potential use of robots in endoscopic neurosurgery. Acta Neurochir (Wien) (in press)Google Scholar
  10. 10.
    Berger MS (1986) Ultrasound-guided stereotaxic biopsy using a new apparatus. J Neurosurg 65: 550–554PubMedCrossRefGoogle Scholar
  11. 11.
    Bouvier G, Saint Hilaire JM, Giard N, Lesage J, Cloutier L, Beique R (1987) Depth electrode implantation at Hospital Notre-Dame, Montreal. In: Engel J Jr (ed) Surgical treatment of the epilepsies. Raven Press, New York, pp 589–594Google Scholar
  12. 12.
    Brown RA (1979) A computerized tomography-computer graphics approach to stereotactic localization. J Neurosurg 50: 715–720PubMedCrossRefGoogle Scholar
  13. 13.
    Camillerapp J, Leplumey J, Walter A (1987) Acquisition of a 3D model of the cranial vascular system from two stereoscopic pictures. AFCET; 16–20 Nov, 1987; AntibesGoogle Scholar
  14. 14.
    Cinquin P (1987) Application des fonctions splines au traitement d’images numériques. These d’etat de SciencesMathematiques; Université Joseph Fourier, GrenobleGoogle Scholar
  15. 15.
    Cloutier L, Nguyen DN, Ghosh S, Boulianne M, Labissonniere P, Bouvier G, Beique R (1985) Simulator allowing spatial viewing of cerebral probes by using a floating line concept. Symposium on optical and electro-optical applied science and Engineering. Cannes, FranceGoogle Scholar
  16. 16.
    Colombo F, Angrilli F, Zanardo A, Pinna V, Alexandre A, Benedetti A (1982) A universal method to employ CT scanner spatial information in stereotactic surgery. Appl Neurophysiol 45: 352–354PubMedGoogle Scholar
  17. 17.
    Daumas-Duport C, Monsaingeon V, Szenthe L, Szikla G (1982) Serial stereotactic biopsies: a double histological code of gliomas according to malignancy and 3D configuration, as an aid to therapeutic decision and assessment of results. Appl Neurophysiol 45: 431–437PubMedGoogle Scholar
  18. 18.
    Denavit J, Hartenberg RS, Evanston ILL (1955) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 55: 215–221Google Scholar
  19. 19.
    Doll J, Schlegel W, Pastyr O, Sturm V, Maier-Borst W (1987) The use of an industrial robot as a stereotactic guidance system. CAR’ 79: 374–378Google Scholar
  20. 20.
    Gildenberg PL (1987) Whatever happened to stereotactic surgery? Neurosurg 20: 983–987CrossRefGoogle Scholar
  21. 21.
    Gildenberg PL. Kaufmann HH, Krishna Murthy KS (1982) Calculation of stereotactic coordinates from the computed tomographic scan. Appl Neurophysiol 45: 443–448Google Scholar
  22. 22.
    Glauser D, Flury P, Durr P, Funakubo H, Burckhardt CW, Favre J, Schnyder P, Fankhauser H (1990) Configuration of a robot dedicated to stereotactic surgery. Stereotactic and Functional Neurosurgery 54 + 55: 468–470PubMedCrossRefGoogle Scholar
  23. 23.
    Goerss SJ, Kelly PJ, Kall BA, Alker GJ (1982) A computed tomographic stereotactic adaptation system. Neurosurgery 10: 375–379PubMedCrossRefGoogle Scholar
  24. 24.
    Gremban KD, Thorpe CE, Kanade T (1988) Geometric camera calibration using systems of linear equations. Proc IEEE of Int Conf on Robotics and Automation, Philadelphia, pp 947–951Google Scholar
  25. 25.
    Gutin PH, Phillips TL, Wara WM, Leibel SA, Hosobuchi Y, Leven VA, Weaver KA, Lamb S (1984) Brachytherapy of recurrent malignant brain tumours with removable high activity iodine-125 sources. J Neurosurg 60: 61–68PubMedCrossRefGoogle Scholar
  26. 26.
    Horsley VA, Clarke RH (1905) On the intrinsic fibers of the cerebellum, its nuclei and its effect tracts. Brain 28: 12–29CrossRefGoogle Scholar
  27. 27.
    Iseki H, Amano K (1985) CT-guided stereotactic surgery in combination with intra-operative monitoring by sector type ultrasonography. Asian Med J 28: 157–167Google Scholar
  28. 28.
    Kall BA, Kelly PJ, Goerss SJ (1985) Interactive stereotactic surgery system for the removal of intracranial tumours utilizing the CO2 laser and the CT-derived database. IEEE Trans Biomed Eng 32: 112–116PubMedCrossRefGoogle Scholar
  29. 29.
    Kall BA, Kelly PJ, Goerss SJ, Earnest F (1985) IV. Cross-registration of points and lesions volumes from MR and CT. Proceed. 7° annual meeting of frontiers of engineering and computing in health care, pp 935–942Google Scholar
  30. 30.
    Kall BA, Kelly PJ, Goerss SJ, Frieder G (1985) Methodology and clinical experience with computed tomography and a computer-resident stereotactic atlas. Neurosurgery 17: 400–407Google Scholar
  31. 31.
    Kall BA, Kelly PJ, Goerss S (1987) Comprehensive computer assisted data collection treatment planning and interactive surgery. Proceed. SPIE, Medical imaging 767: 509–514Google Scholar
  32. 32.
    Kelly PJ (1986) Technical approaches to identification and stereotactic reduction of tumour burden. In: Walker MD, Thomas DGT (eds) Biology of brain tumour. Martinus Nijhoff, Boston Dordrecht Lancaster, pp 237–343Google Scholar
  33. 33.
    Kelly PJ (1988) Volumetric stereotactic surgical resection of intraaxial brain mass lesions. Mayo Clinic Proc 63: 1186–1198Google Scholar
  34. 34.
    Kelly PJ, Alker GJ (1980)A method for stereotactic laser microsurgery in the treatment of deep seated CNS neoplasms. Appl Neurophysiol 43: 210–215PubMedGoogle Scholar
  35. 35.
    Kelly PJ, Alker GJ (1981) A stereotactic approach to deep-seated central nervous system. Surg Neurol 15: 331–335PubMedCrossRefGoogle Scholar
  36. 36.
    Kelly PJ, Alker GJ, Goerss S (1982) Computer assisted stereotactic laser microsurgery for the treatment of intracranial neoplasms. Neurosurgery 10: 324–331PubMedCrossRefGoogle Scholar
  37. 37.
    Kelly PJ, Kall B, Goerss S, Alker GJ (1983) Precision resection of intraaxial CNS lesions by CT-based stereotactic craniotomy and computer monitored CO2 laser. Acta Neurochir (Wien) 68: 1–9CrossRefGoogle Scholar
  38. 38.
    Kelly PJ, Kall BA, Goerss SJ (1984) Transposition of volumetric information derived from computed tomography scanning into stereotactic space. Surg Neurol 21: 465–471PubMedCrossRefGoogle Scholar
  39. 39.
    Kelly PJ, Alker GJ, Kall B, Goerss S (1984) Method ofcomputed-tomography based stereotactic biopsy with arteriographic control. Neurosurgery 14: 172–177PubMedCrossRefGoogle Scholar
  40. 40.
    Kelly PJ, Kall BA, Goerss S, Earnest F (1985) Present and future developments of stereotactic technology. Appl Neurophysiol 48: 1–6PubMedGoogle Scholar
  41. 41.
    Kelly PJ, Earnest F, Kall BA (1986) Surgical options for patients with deepseated brain tumours: computer-assisted stereotactic biopsy. Mayo Clin Proc 6: 223–229Google Scholar
  42. 42.
    Kosugi Y, Watanabe E, Goto J, Watanabe T, Yoshimoto S, Takakura K, Ikebe J (1988) An articulated neurosurgical navigation system using MRI and CT images. IEEE Trans Biomed Eng 35: 147–152PubMedCrossRefGoogle Scholar
  43. 43.
    Kwoh YS, Reed IS, Chen JY, Shao HM, Truong TK, Jonckheere EA (1985) New computerized tomographic-aided robotic stereotaxis system. Robotics Age 7: 17–22Google Scholar
  44. 44.
    Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35: 153–160PubMedCrossRefGoogle Scholar
  45. 45.
    Kwoh YS, Young R (1991) Robotic aided surgery. In: Kelly PJ (ed) Computers in stereotactic neurosurgery. Blackwell Scientific Publication, Cambridge (in press)Google Scholar
  46. 46.
    Lavallée S (1989) Gestes médico-chirurgicaux assistes par ordinateur. Thése Sciences Mathématiques, Université Joseph Fourier, GrenobleGoogle Scholar
  47. 47.
    Masuzawa H, Kamitani H, Sator J (1981) Intraoperative application of sector scanning electronic ultrasound in neurosurgery. Neurol Med Chir (Tokyo) 21: 277–285CrossRefGoogle Scholar
  48. 48.
    Munari C, Betti O (1989) The stereotactic biopsy of brain lesions: a critical review. In: Broggi G, Gerosa MA (eds) Cerebral gliomas. Elsevier Science Publishers, Amsterdam New York Oxford, pp 179–206Google Scholar
  49. 49.
    Mundinger F, Birg W, Klar M (1978) Computer-assisted stereotactic brain operations by means including computerized axial tomography. Appl Neurophysiol 41: 169–182PubMedGoogle Scholar
  50. 50.
    Nguyen JP, Van Effentere R, Fohanno D, Robert G, Sichez JF, Gardeur D (1980) Methode pratique de repérage spatial des petites néoformations intra-crâniennes à partir des données de la tomo-densito-métrie, NeurochirurgieGoogle Scholar
  51. 51.
    Oliver A (1986) Double-headed stereotaxic carrier apparatus for insertion of depth electrodes. J Neurosurg 65: 258–259CrossRefGoogle Scholar
  52. 52.
    Ostertag CB, Mennel HD, Kiessling M (1980) Stereotactic biopsy of brain tumours. Surg Neurol 14: 275–283PubMedGoogle Scholar
  53. 53.
    Perry JH, Rosenbaum AE, Junsford LD, Swink CA, Zorub DS (1980) Computed tomography-guided stereotactic surgery; Conception and development of a new stereotactic methodology. Neurosurgery 7: 376–381PubMedCrossRefGoogle Scholar
  54. 54.
    Peters TM, Clark JA, Oliver A, Marchand EP, Mawko G, Dieumegarde M, Muresan LV (1986) Integrated stereotaxic imaging with CT, MR imaging, and digital subtraction angiography. Radiology 161: 821–826PubMedGoogle Scholar
  55. 55.
    Picard C, Olivier A, Bertrand G (1983) The first human stereotaxic apparatus. The contribution of Aubrey Mussen to the field of stereotaxis. J Neurosurg 59: 673–676PubMedCrossRefGoogle Scholar
  56. 56.
    Roberts DW, Strohbehn JW, Hatch JH, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65: 545–549PubMedCrossRefGoogle Scholar
  57. 57.
    Roth ZS, Mooring BW, Ravani B (1987) An overview of robot calibration. IEEE J Rob Automat 3: 377–385CrossRefGoogle Scholar
  58. 58.
    Scerrati M, Fiorentino A, Fiorentino M, Pola P (1984) Stereotaxic device for polar approaches in orthogonal systems. Technical note. J Neurosurg 61: 1146–1147PubMedCrossRefGoogle Scholar
  59. 59.
    Schad L, Lott S, Schmitt F, Sturm V, Lorenz WJ (1987) Correction of spatial distortion in MR imaging: a prerequisite for accurate stereotaxy. J Comput Assist Tomogr 11: 499–505PubMedCrossRefGoogle Scholar
  60. 60.
    Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain, 2nd edition. G Thieme, StuttgartGoogle Scholar
  61. 61.
    Sedan R, Duparet R (1968) Stéréomètre adaptable au cadre stéréotaxique de J Talairach. Neurochirurgie 14: 577–582PubMedGoogle Scholar
  62. 62.
    Sedan R, Peragut JC, Farnarier Ph, Vallicioni PA (1987) Imagerie moderne et stéreotaxic. Neurochirurgie 33: 29–32PubMedGoogle Scholar
  63. 63.
    Smets C, Vandermeulen D, Suetens P, Oosterlinck A (1989) A knowledgebased system for the 3D reconstruction and representation of the cerebral blood vessels from a pair of stereoscopic angiograms. Proceedings SPIE 1092, Medical Imaging III, pp 130–138Google Scholar
  64. 64.
    Spiegel EA, Wycis HT, Marks M, Lee A (1947) Stereotactic apparatus for operations on the human brain. Science 57: 164–167Google Scholar
  65. 65.
    Steinmetz H, Furst G, Freund HJ (1989) Cerebral cortical localization: application and validation of the proportional grid system in MR imaging. J Comput Assist Tomogr 13: 10–19PubMedCrossRefGoogle Scholar
  66. 66.
    Suetens P, Jansen P (1983) 3D reconstruction of the blood vessels of the brain from a stereoscopic pair of substraction angiograms. Image and vision computing 1: 43–51CrossRefGoogle Scholar
  67. 67.
    Szikla G, Peragut JC (1975) Irradiation interstitielle des gliomes. In: Constans JP, Schlienger M (eds) Radiothérapie des tumeurs du systeme nerveux central. Neurochirurgie [Suppl] 21: 187–228, Masson, ParisGoogle Scholar
  68. 68.
    Szikla G, Bouvier G, Hori T (1975) Localization of brain sulci and convolutions by arteriography. A stereotactic anatomo-radiological study. Brain Res 95: 497–502PubMedCrossRefGoogle Scholar
  69. 69.
    Szikla G, Bouvier F, Hori T, Petrov V (1977) Angiography of the human brain cortex. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  70. 70.
    Taren J, Guiot G, Derome P, Trigo JC (1968) Hazards of stereotaxic thalamotomy. Added safety factors in corroborating X-ray target localization with neurophysiological methods. J Neurosurg 29: 173–182Google Scholar
  71. 71.
    Talairach J, Ajuriaguerra J de David M (1950) A propos des coagulations thérapeutiques sous-corticales. Étude topographique du système ventriculaire en fonction des noyaux gris centraux. Presse Méd 58: 697–701PubMedGoogle Scholar
  72. 72.
    Talairach J, Ajuriaguerra J de David M (1952) Études steréotaxiques des structures encéphaliques profondes chez l’homme. Technique, intérêt physiologique et thérapeutique. Presse Med 60: 605–609PubMedGoogle Scholar
  73. 73.
    Talairach J, David M, Tournoux P, Corredor H, Kvasina T (1957) Atlas d’anatomie stéreotaxique des noyaux gris centraux. Masson, ParisGoogle Scholar
  74. 74.
    Talairach J, Szikla G, Tournoux P, Prossolentis A, Bordas-Ferrer M, Covello L, Jacob M, Mempel E (1967) Atlas d’anatomie stereotaxique du telencephale. Masson, ParisGoogle Scholar
  75. 75.
    Tasker RR, Organ LW, Hawrylyshyn P (1982) Investigation on the surgical target for alleviation of involuntary movement disorders. Appl Neurophysiol 45: 261–274PubMedGoogle Scholar
  76. 76.
    Tsutsumi Y, Andoh Y, Inoue N (1982) Ultrasound-guided echo biopsy for deep-seated brain tumours. J Neurosurg 57: 164–167PubMedCrossRefGoogle Scholar
  77. 77.
    Venaille C, Mischler D, Coatrieux JL, Catros JY (1989) Reconstruction 3D de reseaux vasculaires en angiographie. Proc. 7° Congress AFCET-RFIA, Paris, pp 1533–1547Google Scholar
  78. 78.
    Vidal P, Hache JC, Hayat S, Guerrouad A, Ben Gayed M, Lepers B (1988) Un microtélémanipulateur chirurg ical applicable en neurologie et en ophtalmologie. Congrès IIRIAM, Marseille. Productique HospitalièreGoogle Scholar
  79. 79.
    Wyper DJ, Turner JW, Patterson J, Condon BR, Grossart KWM, Jenkins A, Hadley DM, Rowan JO (1986) Accuracy of stereotactic localisation using MRI and CT. J Neurol Neurosurg Psychiatry 49: 1445–1448PubMedCrossRefGoogle Scholar
  80. 80.
    Young RJ (1987) Application of robotics to stereotactic neurosurgery. Neurol Res 9: 123–128PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • A. L. Benabid
    • 1
    • 3
  • D. Hoffmann
    • 1
    • 3
  • S. Lavallee
    • 2
  • P. Cinquin
    • 2
  • J. Demongeot
    • 2
  • J. F. Le Bas
    • 1
    • 4
  • F. Danel
    • 5
  1. 1.Unité INSERM U. 318, Neurobiologie Préclinique, Laboratoire de Neurobiophysique, UFR de MédecineUniversité Joseph Fourier de GrenobleGrenobleFrance
  2. 2.Laboratoire de Biomathématiques, UFR de MédecineUniversité Joseph Fourier de GrenobleGrenobleFrance
  3. 3.Service de NeurochirurgieGrenobleFrance
  4. 4.Unité d’Imagerie par Résonance Magnétique GrenobleFrance
  5. 5.CHU Albert MichallonGrenobleFrance

Personalised recommendations