Skip to main content

Interactions Between Agrobacterium tumefaciens and Its Host Plant Cells

  • Chapter
Genes Involved in Plant Defense

Part of the book series: Plant Gene Research ((GENE))

Abstract

Agrobacterium tumefaciens is the causative agent of the crown gall disease of dicotyledonous plants (Smith and Townsend, 1907; reviewed in Braun, 1982). The finding 13 years ago that the bacterium can transfer a discrete segment of tumorigenic DNA (T-DNA) to the genome of the plant host (Chilton et aI., 1977, 1980; Willmitzer, 1980) attracted the interest ofa large number of laboratories around the world. This was largely due to the possibility of exploiting this unprecedented interkingdom DNA transfer to create transgenic plants. There have been at least two consequences of this research. The first is that Agrobacterium has indeed been used to create transgenic plants of several dozen species containing genes of scientific or commercial importance. The second consequence, perhaps somewhat accidental, is that Agrobacterium now provides the best available model for studying the molecular interactions between plants and their bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyoshi D.E., Klee H., Amasino R., Nester E.W., Gordon M.P. (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994–5998

    PubMed  CAS  Google Scholar 

  • Albright L.M.. Yanofsky M.F., Leroux B., Ma D., Nester E.W. (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 169: 1046–1055

    PubMed  CAS  Google Scholar 

  • Albright L.M., Huala E., Ausubel F.M. (1989) Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet 23: 311–336

    PubMed  CAS  Google Scholar 

  • Alt-Moerbe J., Rak B., Schroder J. (1986) A 3.6-kbp segment from the vir region ofTi plasmids contains genes responsible for border sequence-directed production of T region circles in E. coli. EMBO J 5: 1129–1135

    PubMed  CAS  Google Scholar 

  • Ashby A.M., Watson M.D., Loake G.J., Shaw C.H. (1988) Ti Plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C 1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170: 4181–4187

    PubMed  CAS  Google Scholar 

  • Bakkeren G., Koukolikova-Nicola Z., Grimsley N., Hohn B. (1989) Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer. Cell 57: 847–857

    PubMed  CAS  Google Scholar 

  • Bergeron J., MacLeod R.A., Dion P. (1990) Specificity of octopine uptake by Rhizobium and Pseudomonas strains. Appl Environ Microbiol 56: 1453–1458

    PubMed  CAS  Google Scholar 

  • Binns A.N., Thomashow M.F. (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42: 575–606

    CAS  Google Scholar 

  • Bouzar H., Moore L.W. (1987) Isolation of different Agrobacterium biovars from a natural oak savanna and tall grass prairie. Appl Environ Microbiol 53: 717–721

    PubMed  CAS  Google Scholar 

  • Braun A. (1982) A history of the crown gall problem In: Kahl G., Schell J.S. (eds) Molecular biology of plant tumors. Academic Press, New York, pp 155–210

    Google Scholar 

  • Buchanan-Wollaston V., Passiatore J.E., Cannon F. (1987) The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172–175

    CAS  Google Scholar 

  • Buchmann I., Marner F.J., Schroder G., Waffenschmidt S., Schroder J. (1985) Tumor genes in plants: T-DNA encoded cytokinin biosynthesis. EMBO J 4: 853–859

    PubMed  CAS  Google Scholar 

  • Cangelosi G.A., Hung L., Puvanesarajah V., Stacey G., Ozga D.A., Leigh J.A., Nester E.W. (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol. 169: 2086–2091

    PubMed  CAS  Google Scholar 

  • Cangelosi G.A., Martinetti G., Leigh J.A., Lee C.C., Theines C., Nester E.W. (1989) Role of Agrobacterium tumefaciens Chv A protein in export of ß-1,2-glucan. J Bacteriol 171: 1609–1615

    PubMed  CAS  Google Scholar 

  • Cangelosi G.A., Martinetti G., Nester E.W. (1990) Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic ß-l,2-glucan. J Bacteriol 172: 2172–2174

    PubMed  CAS  Google Scholar 

  • Cardarelli M., Spano L., DePaolis A., Mauro M.L., Vitali G. (1985) Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes. 1855. Plant Mol Biol 5: 385–391

    CAS  Google Scholar 

  • Chelsky D., Ralph P., Jonak G. (1989) Sequence requirements for synthetic peptide-mediated translocation to the nuc1eus. Mol Cell Biol 9: 2487–2492

    PubMed  CAS  Google Scholar 

  • Chilton M.-D., Drummond M.H., Merlo D.J., Sciaky D., Montoya A.L, Gordon M.P., Nester E.W. (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271

    Google Scholar 

  • Chilton M.-D., Saiki R.K., Yadav N., Gordon M.P., Quetier F. (1980) T-DNA from Agrobacterium Ti plasmid is in the nuc1ear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77: 4060–4064

    Google Scholar 

  • Christie P.J., Ward J.E., Winans S.C., Nester E.W. (1988) The Agrobacterium tumefaciens vir E2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170: 2659–2667

    PubMed  CAS  Google Scholar 

  • Christie P.J., Ward J.E., Gordon M.P., Nester E.W. (1989) A gene required for transfer of T-DNA to plants encodes an ATP-ase with autophosphorylating activity. Proc Natl Acad Sci USA 86: 9677–9681

    PubMed  CAS  Google Scholar 

  • Chyi Y.S., Jorgensen R.A.. Goldstein O., Tanksley S.D., Loaiza-Figueroa F. (1986) Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet 204: 64–69

    CAS  Google Scholar 

  • Citovsky V., DeVos G., Zambryski P. (1988) Single-stranded DNA binding protein encoded by the vir E locus of Agrobacterium tumefaciens. Science 240: 501–504

    PubMed  CAS  Google Scholar 

  • Close T.J., Tait R.C., Kado C.I. (1985) Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. J Bacteriol 164: 774–781

    Google Scholar 

  • Close T.J., Rogowsky P.M., Kado C.I., Winans S.C., Yanofsky M.F., Nester E.W. (1987) Dual control of the Agrobacterium tumefaciens Ti plasmid virulence genes. J Bacteriol 169: 5113–5118

    PubMed  CAS  Google Scholar 

  • Das A. (1988) The A. tumejaciens vir E operon encodes a single stranded DNA binding protein. Proc Natl Acad Sci USA 85: 2609–2913

    Google Scholar 

  • De Cleene M. (1988) The susceptibility of plants of Agrobacterium: a discussion of the role of phenolic compounds. FEMS Microbiol Rev 54: 1–8

    Google Scholar 

  • De Iannino N.I., Ugalde R.A. (1989) Biochemical characterization of avirulent Agrobacterium tumefaciens chr A mutants: synthesis and excretion of ß-(l-2)glucan. J Bacteriol 171: 2842–2849

    PubMed  Google Scholar 

  • De Vos G., Zambryski P. (1989) Expression of Agrobacterium nopaline-specific VirDl, VirD2, and VirCI proteins and their requirement for T-strand formation in E. coil. Mol Plant Microbe Interact 2: 43–52

    PubMed  Google Scholar 

  • Djordjevic S.P., Chen H., Batley M., Redmond J.W., Rolfe B.G. (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J Bacteriol 169: 53–60

    PubMed  CAS  Google Scholar 

  • Douglas C.J., Staneloni R.J., Rubin R.A., Nester E.W. (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence gene. J Bacteriol 161: 850–860

    PubMed  CAS  Google Scholar 

  • Durrenberger F., Crameri A., Hohn B., Koukolikova-Nicola Z. (1989) Covalently bound Vir D2 protein of Agrobacterium tumefaciens protects the T-DNA from exonuc1eolytic degradation. Proc Natl Acad Sci USA 86: 9154–9158

    PubMed  CAS  Google Scholar 

  • Dylan T., Ielpi L., Stanfield S., Kashyap L., Douglas C., Yanofsky M., Nester E., Helinski D.R., Ditta G. (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83: 4403–4407

    PubMed  CAS  Google Scholar 

  • Ellis J.G., Murphy P.I. (1981) Four new opines from crown gall tumors—their detection and properties. Mol Gen Genet 181: 36–43

    CAS  Google Scholar 

  • Ellis J.G., Kerr A., Petit A., Tempe J. (1982) Conjugal transfer of nopaline and agropine Tiplasmids-the role of agrocinopines. Mol Gen Genet 186: 269–273

    CAS  Google Scholar 

  • Ellis J.G., Ryder M.H., Tate M.E. (1984) Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet 195: 466–473

    CAS  Google Scholar 

  • Ellis J.G., Llewellyn D.J., Walker J.C., Dennis E.S., Peacock W.J. (1987) The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer. EMBO J 6: 3203–3208

    PubMed  CAS  Google Scholar 

  • Fraley R.T., Rogers S.G., Horsch R.B. (1986) Genetic transformation in higher plants. Crit Rev Plant Sci 4: 1–46

    CAS  Google Scholar 

  • Gaworzewska R.T., Carlile M.J. (1982) Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legurnes and other plants. J Gen Microbiol 128: 1179–1188

    CAS  Google Scholar 

  • Gietl C., Koukolikova-Nicola Z., Hohn B. (1987) The mobilization of the T-DNA from Agrobacterium to the plant cells involves a single-stranded DNA binding protein. Proc Natl Acad Sci USA 84: 9006–9010

    PubMed  CAS  Google Scholar 

  • Gelvin S.B. (1990) Crown gall disease and hairy root disease: a siedgehammer and a tackhammer. Plant Physiol 92: 281–285

    PubMed  CAS  Google Scholar 

  • Grimsley N., Hohn B., Ramos C., Kado C., Rogowsky P. (1989) DNA transferfrom Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol Gen Genet 217: 309–316

    PubMed  CAS  Google Scholar 

  • Halverson L.J., Stacey G. (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50: 193–225

    PubMed  CAS  Google Scholar 

  • Hawes M.C., Smith L.Y. (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J Bacteriol 171: 5668–5671

    PubMed  CAS  Google Scholar 

  • Hawes M.C., Smith L.Y., Howarth A.J. (1988) Agrobacterium tumefaciens mutants deficient in chemotaxis to root exudates. Mol Plant Microbe Interact 1: 182–186

    Google Scholar 

  • Heinemann J.A., Sprague G.F (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacterial and yeast. Nature 340: 205–209

    Google Scholar 

  • Herrera-Estrella A., Chen Z., Van Montagu M., Wang K. (1988) Vir D proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5′ terminus of T-strand molecules. EMBO J 7: 4055–4062

    PubMed  CAS  Google Scholar 

  • Hodgkin J., Kaiser D. (1977) Cell-to-cell stimulation of movements in nonmotile mutants of Myxococcus. Proc Natl Acad Sci USA 74: 2938–2942

    PubMed  CAS  Google Scholar 

  • Holsters M., Villarroel R., Gielen J., Seurinck J., De Greve H., Van Montagu M., Schell J. (1983) An analysis of the boundaries of the octopine T L-DNA in tumors induced by Agrobacterium tumefaciens. Mol Gen Genet 190: 35–41

    CAS  Google Scholar 

  • Hooykaas P.J.J. (1989) Transformation of plant cells via Agrobacterium. Plant Mol Biol 13: 327–336

    PubMed  CAS  Google Scholar 

  • Howard E.A., Winsor B.A., De Vos G., Zambryski P. (1989) Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: tight association of Vir D2 with the 5′ ends of T-strands. Proc Natl Acad Sci USA 86: 4017–4021

    PubMed  CAS  Google Scholar 

  • Huang M.-L.W., Cangelosi G.A., Halperin W., Nester E.W. (1990) A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol 172: 1814–1822

    PubMed  CAS  Google Scholar 

  • Huang Y., Morel P., Powell B., Kado C.I. (1990) Vir A, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172: 1142–1144

    PubMed  CAS  Google Scholar 

  • Jayaswal R.K., Veluthambi K., Gelvin S.B., Slightom J.L. (1987) Double stranded T-DNA cleavage and the generation of single stranded T-DNA molecules in E. coli by a vir D encoded border specific endonuclease from A. tumefaciens. J Bacteriol 169: 5035–5045

    PubMed  CAS  Google Scholar 

  • Ji J.M., Martinez A., Dabrowski M., Veluthambi K., Gelvin S.B., Ream W. (1988) The overdrive enhancer sequence stimulates production of T-strands from the Agrobacterium tumefaciens tumor-inducing plasmid. In: Staskawicz B., Ahlquist P., Yoder P. (eds) Molecular biology of plant-pathogen interactions. AR Liss, New York, pp 19–31 (UCLA Symp Mol Cell Biol)

    Google Scholar 

  • Jin S., Roitsch T., Ankenbauer R.G., Gordon M.P., Nester E.W. (1990a) The Vir A protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene induction. J Bacteriol 172: 525–530

    PubMed  CAS  Google Scholar 

  • Jin S., Roitsch T., Christie P.J., Nester E.W. (1990b) The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172: 531–537

    PubMed  CAS  Google Scholar 

  • Jorgensen R.A., Snyder C., Jones J.D.G. (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed in A. tumefaciens C58 derivatives. Mol Gen Genet 207: 471–477

    CAS  Google Scholar 

  • Joos H., Inze D., Caplan A., Sormann M., Van Montagu M., Schell J. (1983) Genetic analysis of T-DNA transeripts in nopaline crown gall. Cell 32: 1057–1067

    PubMed  CAS  Google Scholar 

  • Kahl G. (1982) Molecular biology ofwound healing: the conditioning phenomenon. In: Kahl G., Schell J.S. (eds) Molecular biology of plant tumors. Academic Press, London, pp 211–268

    Google Scholar 

  • Kaiser D. (1989) Multicellular development in Myxobacteria. In: Hopwood D.A., Chater K.F. (nteds) Genetics of bacterial diversity. Academic Press, London, pp 243–263

    Google Scholar 

  • Kamoun S., Cooley M.B., Rogowsky U.M., Kado C.I. (1989) Two chromosomal loci involved in production of exopolysaccharide in Agrobacterium tumejaciens. J Bacteriol 171: 1755–1759

    PubMed  CAS  Google Scholar 

  • Klapwijk P.M., Schilperoort R.A. (1979) Negative control of octopine degradation and transfer genes of octopine Ti plasmids in Agrobacterium tumefaciens. J Bacteriol 141: 424–431

    Google Scholar 

  • Klee H., Horsch R., Rogers S. (1987) Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu Rev Plant Physiol 38: 467–486

    CAS  Google Scholar 

  • Koukolikova-Nicola A., Shillita R.D., Hohn B., Wang K., Van Montagu M., Zambryski P. (1985) Involvement of circular intermediates in the transfer of T-DNA from Agrobacterium tumefaciens to plant cells. Nature 313: 191–196

    CAS  Google Scholar 

  • Koukolikova-Nicola Z., Albright L., Hohn B. (1987) The mechanism of T-DNA transfer from Agrobacterium tumefaciens to the plant cello. In: Hohn T., Schell J. (eds) Plant DNA infectious agents. Springer, Wien New York, pp 110–138 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • Krens F.A., Molendijk L., Wullems G.J., Schilperoort R.A. (1985) The role of bacterial attachment in the transformation of cell-wall-regenerating tobacco protoplasts by Agrobacterium tumefaciens. Planta 166: 300–308

    CAS  Google Scholar 

  • Kuldau G.A., DeVos G., Owen J., McCaffrey G., Zambryski P. (1990) The vir B operon of Agrobaclerium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 221: 256–266

    PubMed  CAS  Google Scholar 

  • Kwok W.W., Nester E.W., Gordon M.P. (1985) Unusual plasmid DNA organization in an octopine crown gall tumor. Nucleic Acid Res 13: 459–471

    PubMed  CAS  Google Scholar 

  • Leemans J., Deblaere R., Willmitzer L., DeGreve H., Hernalsteens J.P., Van Montagu M., Schell J. (1982) Genetic identification offunctional of TL-DNA transcripts in octopine crown galls. EMBO J 1: 147–152

    PubMed  CAS  Google Scholar 

  • Leroux B., Yanofsky M.F., Winans S.C., Ward J.E., Zeigler S.F., Nester E.W. (1987) Characterization of the L’ir A locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 6: 849–856

    PubMed  CAS  Google Scholar 

  • Lichtenstein D.P., Fuller S.L., (1987) Vectors for the genetic engineering of plants. In: Rigby P.W.J. (eds) Genetic engineering, vol 6. Academic Press, New York, pp 103–183

    Google Scholar 

  • Lippincott B.B., Lippincott J.A. (1969) Bacterial attachment to a specific wound site as essential stage in tumor initiation by Agrobacterium tumefaciens. J Bacteriol 97: 620–628

    PubMed  CAS  Google Scholar 

  • McBride K.E., Knauf V.C. (1988) Genetic analysis of the vir E operon of the Agrobacterium Ti plasmid pTiA6. J Bacteriol 170: 1430–1437

    PubMed  CAS  Google Scholar 

  • Machida Y., Usami S., Yamamoto A., Takebe I. (1986) Plant-inducible recombination between the 25-base-pair border sequence of T-DNA in Agrobacterium tumefaciens. Mol Gen Genet 204: 374–382

    CAS  Google Scholar 

  • Manoil C., Beckwith J. (1986) A genetic approach to analyzing membrane protein topology. Science 233: 1403–1408

    PubMed  CAS  Google Scholar 

  • Matthysse A.G. (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154: 906–915

    PubMed  CAS  Google Scholar 

  • Matthysse A.G. (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169: 313–323

    PubMed  CAS  Google Scholar 

  • Matthysse A.G., Holmes K.V., Gurlitz R.H.G. (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145: 583–595

    PubMed  CAS  Google Scholar 

  • Melchers L.S., Thompson D.V., Idler K.B., Neuteboom T.C., deMaagd R.A., Schilperoort R.A., Hooykaas P.J.J. (1987) Molecular characterization of the virulence gene vir A of the Agrobacterium tumefaciens Ti plasmid. Plant Mol Biol 9: 635–645

    CAS  Google Scholar 

  • Melchers L.S. Regensburg-Tuink A.J.G., Schilperoort R.A., Hooykaas P.J.J. (1989a) Specificity of signal molecules on the activation of Agrobacterium virulence gene expression. Mol Microbiol 3: 969–977

    PubMed  CAS  Google Scholar 

  • Melchers L.S. Regensburg-Tuink T.J.F., Bourret R.B., Sedee N.J.A., Schilperoort R.A., Hooykaas P.J.J. (1989b) Membrane topology and functional analysis of the sensory protein Vir A of Agrobacterium tumefaciens. EMBO J 8: 1919–1925

    PubMed  CAS  Google Scholar 

  • Messens E., Lenaerts E.A., Van Montagu M., Hedges R.W. (1985) Genetic basis for opine secretion from crown gall tumor cells. Mol Gen Genet 199: 344–348

    CAS  Google Scholar 

  • Miller J.F., Mekalanos J.J., Falkow S. (1989) Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916–922

    PubMed  CAS  Google Scholar 

  • Miller K.J., Kennedy E.P., Reinhold V.N. (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 213: 48–51

    Google Scholar 

  • Morris R.O. (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37: 509–538

    CAS  Google Scholar 

  • Morris R.O., Powell G.K. (1987) Genes specifying cytokinin biosynthesis in prokaryotes. Bioessays 6: 23–28

    CAS  Google Scholar 

  • Nester E.W., Gordon M.P., Amasino R.M., Yanofsky M.F. (1984) Crown gaU: a molecular and physiological analysis. Annu Rev Plant Physiol 35: 387–413

    CAS  Google Scholar 

  • Nixon B.T., Ronson C.W.. Ausubel F.M. (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntr Band ntr C. Proc Natl Acad Sci USA 83: 7850–7854

    PubMed  CAS  Google Scholar 

  • Ochman H., Gerber A.S., Hartl D.L. (1988) Genetic application of an inverse polymerase chain reaction. Genetics 120: 621–623

    PubMed  CAS  Google Scholar 

  • Otten L., De Greve H., Leemans J., Hain R., Hooykaas P., Schell J. (1984) Restoration of virulence of vir region mutants of Agrobacteriurn turnefaciens strain B6S3 by coinfection with normal and mutant Agrobacteriurn strains. Mol Gen Genet 195: 159–163

    CAS  Google Scholar 

  • Parke D., Ornston L.N., Nester E.W. (1987) Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J Bacteriol 169: 5336–5338

    PubMed  CAS  Google Scholar 

  • Pazour G.J., Das A. (1990) vir G, an Agrobacterium turnefaciens transcriptional activator, initiates translation at a UUG eodon and in a sequence-specific DNA-binding protein. J Bacteriol 172: 1241–1249

    PubMed  CAS  Google Scholar 

  • Peralta E.G., Ream L.W. (1985) T-DNA border sequence required for crown gaU tumorigenesis. Proc Natl Acad Sci USA 82: 5112–5116

    PubMed  CAS  Google Scholar 

  • Peralta E.G., Hellmiss R., Ream L.W. (1986) Overdrive, a T-DNA transmission enhaneer on the A. turnefaciens tumor-inducing plasmid. EMBO J 5: 1137–1142

    PubMed  CAS  Google Scholar 

  • Petit A., Tempe J. (1985) The function Of T-DNA in nature. In: van Vloten-Doting L., Groot G., Hall T. (eds) Molecular form and function of the plant genome. Plenum, New York, pp 625–636

    Google Scholar 

  • Ream W. (1989) Agrobacterium turnefaciens and interkingdom genetic exchange. Annu Rev Phytopathol 27: 583–618

    Google Scholar 

  • Regier D.A., Akiyoshi D.E., Gordon M.P. (1989) Nucleotide sequence of the tzs gene from Agrobacterium rhizogenes strain A4. N ucleic Acids Res 17: 88–85

    Google Scholar 

  • Ronson C.W., Nixon B.T., Ausubel F.M. (1987) Conserved domains in bacterial regulatory proteins that respond 10 environmental stimuli. Cell 49: 579–581

    PubMed  CAS  Google Scholar 

  • Schmü lling T., Schell J., Spena A. (1988) Single genes from Agrobacterium rhizogenes inftuence plant development. EMBO J 7: 2621–2629

    Google Scholar 

  • Schroder G., Waffenschmidt S., Weiler E.W., Schroder J. (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138: 387–391

    PubMed  CAS  Google Scholar 

  • Sen P., Pazour G.I., Anderson D., Das A. (1989) Cooperative binding of Agrobacterium tumefaciens Vir E2 protein to single-stranded DNA. 1 Bacteriol 171: 2573–2580

    CAS  Google Scholar 

  • Shaw C.H., Watson M.D., Carter G.H., Shaw C.H. (1984) The right hand copy of the nopaline Ti plasmid 25 bp repeat is required for tumor formation. Nucleic Acids Res 12: 6031–6041

    PubMed  CAS  Google Scholar 

  • Shaw C.H.J., Ashby A.M., Brown A., Royal C., Loake G.J., Shaw C.H. (1989) Vir A and Gare necessary for acetosyringone chemotaxis in Agrobacterium tumefaciens. Mol Microbiol 2: 413–417

    Google Scholar 

  • Shen W.H., Petit A., Guern J., Tempe J. (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85: 3417–3421

    PubMed  CAS  Google Scholar 

  • Simpson R.B., O’Hara P.J., Kwok W., Montoya A.L., Licktenstein C., Gordon M.P., Nester E.W. (1982) DNA from the A6S/2 crown gall tumor contains scrambled Ti plasmid sequences near its junctions with the plant DNA. Cell 29: 1005–1014

    PubMed  CAS  Google Scholar 

  • Singh K., Tokuhis J.G., Dennis E.S., Peacock W.J. (1989) Saturation mutagenesis of the octopine synthase enhancer: correlation of mutant phenotypes with binding of a nuclear pro tein factor. Proc Natl Acad Sci USA 86: 3733–3737

    PubMed  CAS  Google Scholar 

  • Sinkar V.P., White F.F., Gordon M.P. (1987) Molecular biology of Ri plasmid: a review. J Biosci 11: 47–58

    CAS  Google Scholar 

  • Sinkar V.P., Pythoud F., White F.F., Nester E.W., Gordon M.P. (1988) rol A locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Genes Dev 2: 688–697

    PubMed  CAS  Google Scholar 

  • Smith E.F., Townsend C.O. (1907) A plant-tumour of bacterial origin. Science 25: 671–673

    PubMed  CAS  Google Scholar 

  • Spanier K., Schell J., Schreier P.H. (1989) A functional analysis of T-DNA gene 6b: the fine tuning of cytokinin effects on shoot development. Mol Gen Genet 219: 209–216

    PubMed  CAS  Google Scholar 

  • Spena A., Schmülling T., Koncz C., Schell J.S. (1987) Independent and synergistic activity of rot A, B, and C loci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899

    PubMed  CAS  Google Scholar 

  • Spencer P.A., Towers G.H.N. (1988) Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27: 2781–2785

    CAS  Google Scholar 

  • Spielman A., Simpson R.B. (1986) T-DNA structure in transgenic tobacco plants with multiple independent integration sites. Mol Gen Genet 205: 34–41

    Google Scholar 

  • Stachel S.E., Nester E.W. (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J5: 1445–1454

    PubMed  CAS  Google Scholar 

  • Stachel S.E., Zambryski P.C. (1986a) vir A and vir G control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46: 325–333

    PubMed  CAS  Google Scholar 

  • Stachel S.E., Zambryski P.C.(1986b) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47: 155–157

    PubMed  CAS  Google Scholar 

  • Stachel S.E., Zambryski P.C.(1989) Generic trans-kingdom sex? Nature 340: 190–191

    PubMed  CAS  Google Scholar 

  • Stachel S.E., Messens E., Van Montagu M., Zambryski P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629

    Google Scholar 

  • Stachel S.E., Nester E.W., Zambryski P. (1986a) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379–383

    PubMed  CAS  Google Scholar 

  • Stachel S.E., Timmerman B., Zambryski P. (1986b) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322: 706–712

    CAS  Google Scholar 

  • Stachel S.E., Timmerman B., Zambryski P. (1987) Activation of Agrobacterium tumefaciens vir gene expression gene rates multiple single-stranded T-strand molecules from the pTiA6 region: requirement for 5′ rir D products. EMBO J 6: 857–863

    PubMed  CAS  Google Scholar 

  • Steck T.R., Close T.J., Kado C.I. (1989) High levels of double-stranded transferred DNA (T-DNA) processing from an intact nopaline Ti plasmid. Proc Natl Acad Sci USA 86: 2133–2137

    PubMed  CAS  Google Scholar 

  • Stock J.B., Ninfa A.J., Stock A.M. (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490

    PubMed  CAS  Google Scholar 

  • Tempe J., Goldmann A. (1982) Occurrence and biosynthesis of opines. In: Kahl G., Schell J. (eds) Molecular biology of plant tumors. Academic Press, New York, pp 427–449

    Google Scholar 

  • Tempe J., Petit A. (1982) Opine utilization by Agrobacterium. In: Kahl G., Schell J. (eds) Molecular biology of plant tumors. Academic Press, New York, pp 451–459

    Google Scholar 

  • Thomashow M.F., Nutter R., Montoya A.L., Gordon M.P., Nester E.W. (1980) Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729–739

    PubMed  CAS  Google Scholar 

  • Thomashow L.S., Reeves S., Thomashow M.F. (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81:5071–5075

    PubMed  CAS  Google Scholar 

  • Thomashow M.F., Karlinsey J.E., Marks J.R., Hurlbert R.E. (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169: 3209–3216

    PubMed  CAS  Google Scholar 

  • Thompson D.V., Melchers L.S., Idler K.B., Schilperoort R.A., Hooykaas P.J.J. (1988) Analysis of the complete nuc1eotide sequence of the Agrobacterium tumefaciens vir B operon. Nuc1eic Acids Res 16: 4621–4636

    CAS  Google Scholar 

  • Tinland B, Huss B., Paulus F., Bonnard G., Otten L. (1989) Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as weil as cytokinin genes. Mol Gen Genet 219: 217–224

    CAS  Google Scholar 

  • Toro N., Datta A., Yanofsky M., Nester E. (1988) Role of the overdrive sequence in T-DNA border c1eavage in Agrobacterium. Proc Natl Acad Sci USA 85: 8558–8562

    PubMed  CAS  Google Scholar 

  • Toro N., Datta A., Carmi O.A., Young C., Prusti R.K., Nester E.W.(1989) The Agrobacterium tumejaciens vir eIgene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171: 6845–6849

    PubMed  CAS  Google Scholar 

  • Ursic D., Slightom J.L., Kemp J.D. (1983) A. tumefaciens T-DNA integrates into multiple sites of the sunftower crown gall genome. Mol Gen Genet 190: 494–503

    CAS  Google Scholar 

  • Veluthambi K., Jayaswal R.K., Gelvin S.B. (1987) Virulence genes A, G, and D mediate the double stranded border c1eavage of T-DNA from the Agrobacterium Ti plasmid. Proc Natl Acad Sci USA 84: 1881–1885

    PubMed  CAS  Google Scholar 

  • Veluthambi K., Krishnan M., Gould J.H., Smith R.H., Gelvin S.B. (1989) Opines stimulate induction of the vir genes of Agrobacterium tumefaciens Ti plasmid. J Bacteriol 171: 3696–3703

    PubMed  CAS  Google Scholar 

  • Virts E.L., Gelvin S.B. (1985) Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciens to Petunia protoplasts. J Bacteriol 162: 1030–1038

    PubMed  CAS  Google Scholar 

  • Wang K., Herrera-Estrella L., Van Montagu M., Zambryski P. (1984) Right 25 bp terminus sequences of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 35–41

    Google Scholar 

  • Wang K., Genetello C., Van Montagu M., Zambryski P. (1987a) Sequence context of the TDNA border repeat element determines its relative activity during T-DNA transfer to plant cells. Mol Gen Genet 210: 338–346

    CAS  Google Scholar 

  • Wang K., Stachel S.E., Timmerman B., Van Montagu M., Zambryski P. (1987b) Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587–591

    PubMed  CAS  Google Scholar 

  • Ward E.R., Barnes W.M. (1988) Vir D2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242: 927–930

    CAS  Google Scholar 

  • Ward J.E., Akiyoski D.E., Regier D., Datta A., Gordon M.P., Nester E.W. (1988) Character ization of the vir B operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263: 5804–5814

    PubMed  CAS  Google Scholar 

  • Ward J.E., Akiyoski O.E., Regier D., Datta A., Gordon M.P., Nester E.W. (1990a) Correction: characterization of the l’ir B operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 265: 4768

    PubMed  CAS  Google Scholar 

  • Ward J.E., Dale E.M., Christie P.J., Nester E.W., Binns A.N. (1990b) Complementation analysis of Agrobacterium tumefaciens Ti plasmid virB genes by use of a vir promoter expression vector; virB9, virB10, and virB11 are essential virulence genes. J Bacteriol 172: 5187–5199

    PubMed  CAS  Google Scholar 

  • Weiler E.W., Schroder J. (1987) Hormone genes and crown gall disease. Trends Biochem Sci 12: 271–275

    CAS  Google Scholar 

  • Weising K., Schell J., Kahl G. (1989) Foreign genes in plants: transfer, structure, expression and applications. Annu Rev Genet 22: 421–477

    Google Scholar 

  • White F.F. (1990) Vectors for gene transfer in higher plants. In:Kung S.-D., Arntzen C.J. (eds) Plant biotechnology. Butterworths, Boston, pp 3–34

    Google Scholar 

  • White F.F., Nester E.W. (1980) Hairy root plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141: 1134–1141

    PubMed  CAS  Google Scholar 

  • White F.F., Sinkar V.P. (1987) Agrobacterium rhizogenes. In: Hohn T., Schell J. (eds) Plant DNA infectious agents. Springer, Wien New York, pp 149–178 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]

    Google Scholar 

  • Willetts N., Skurray R. (1987) Structure and junction of the F factor and mechanism of conjugation. In: Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington, OC, pp 1110–1133

    Google Scholar 

  • Willmitzer L., Schmalenbach W., Schell J. (1981) Transcription of T-DNA in octopine and nopaline crown gall tumours is inhibited by low concentrations of a-aminitin. Nucleic Acids Res 9: 4801–4812

    PubMed  CAS  Google Scholar 

  • Winans S.C. (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation and acidic growth media. J Bacteriol 172: 2433–2438

    PubMed  CAS  Google Scholar 

  • Winans S.C., Walker G.C. (1985) Conjugal transfer system of the N incompatibility plasmid pKM101. J Bacteriol 161: 402–410

    PubMed  CAS  Google Scholar 

  • Winans S.C., Ebert P.R., Stachel S.E., Gordon M.P., Nester E.W. (1986) A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci 83: 82788282

    Google Scholar 

  • Winans S.C., Kerstetter R.A., Nester E.W. (1988) Transcriptional regulation of the vir A and vir G genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047–4054

    PubMed  CAS  Google Scholar 

  • Winans S.C., Kerstetter R.A., Ward J.E., Nester E.W. (1989) A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J Baeteriol 171: 1616–1622

    CAS  Google Scholar 

  • Willmitzer L., Debeuckeleer M., Lemmers M., Van Montagu M., Schell J. (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287: 359–361

    CAS  Google Scholar 

  • Yadav N.S., Vanderlayden J., Bennett D.R., Barnes W.M., Mary-Dell Chilton (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6326

    PubMed  CAS  Google Scholar 

  • Yanofsky M.F., Porter S.G., Young C., Albright L.A., Gordon M.P., Nester E.W. (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonucIease. Cell 47: 471–477

    PubMed  CAS  Google Scholar 

  • Young C., Nester E.W. (1988) Association of the Vir02 protein with the 5′ end ofT strands in Agrobacterium tumefaciens. J Bacteriol 170: 3367–3374

    PubMed  CAS  Google Scholar 

  • Zambryski P. (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet 22: 1–30

    PubMed  CAS  Google Scholar 

  • Zambryski P., Depicker A., Kruger K., Goodman H. (1982) Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. J Mol Appl Genet 1: 361–370

    PubMed  CAS  Google Scholar 

  • Zambryski P., Tempe J., Schell J. (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201

    PubMed  CAS  Google Scholar 

  • ZoÅ•reguieta A., Ugalde R.A. (1986) Formation in Rhizobium and Agrobacterium spp. ofa 235-kilodalton protein intermediate in ß-D(l-2)glucan synthesis. J Bacteriol 167: 947–951

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Winans, S.C. (1992). Interactions Between Agrobacterium tumefaciens and Its Host Plant Cells. In: Boller, T., Meins, F. (eds) Genes Involved in Plant Defense. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6684-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6684-0_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7380-0

  • Online ISBN: 978-3-7091-6684-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics