Advertisement

Interactions Between Agrobacterium tumefaciens and Its Host Plant Cells

  • Stephen C. Winans
Part of the Plant Gene Research book series (GENE)

Abstract

Agrobacterium tumefaciens is the causative agent of the crown gall disease of dicotyledonous plants (Smith and Townsend, 1907; reviewed in Braun, 1982). The finding 13 years ago that the bacterium can transfer a discrete segment of tumorigenic DNA (T-DNA) to the genome of the plant host (Chilton et aI., 1977, 1980; Willmitzer, 1980) attracted the interest ofa large number of laboratories around the world. This was largely due to the possibility of exploiting this unprecedented interkingdom DNA transfer to create transgenic plants. There have been at least two consequences of this research. The first is that Agrobacterium has indeed been used to create transgenic plants of several dozen species containing genes of scientific or commercial importance. The second consequence, perhaps somewhat accidental, is that Agrobacterium now provides the best available model for studying the molecular interactions between plants and their bacterial pathogens.

Keywords

Hairy Root Agrobacterium Tumefaciens Crown Gall Bottom Strand Crown Gall Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyoshi D.E., Klee H., Amasino R., Nester E.W., Gordon M.P. (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994–5998PubMedGoogle Scholar
  2. Albright L.M.. Yanofsky M.F., Leroux B., Ma D., Nester E.W. (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bacteriol 169: 1046–1055PubMedGoogle Scholar
  3. Albright L.M., Huala E., Ausubel F.M. (1989) Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet 23: 311–336PubMedGoogle Scholar
  4. Alt-Moerbe J., Rak B., Schroder J. (1986) A 3.6-kbp segment from the vir region ofTi plasmids contains genes responsible for border sequence-directed production of T region circles in E. coli. EMBO J 5: 1129–1135PubMedGoogle Scholar
  5. Ashby A.M., Watson M.D., Loake G.J., Shaw C.H. (1988) Ti Plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C 1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol 170: 4181–4187PubMedGoogle Scholar
  6. Bakkeren G., Koukolikova-Nicola Z., Grimsley N., Hohn B. (1989) Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer. Cell 57: 847–857PubMedGoogle Scholar
  7. Bergeron J., MacLeod R.A., Dion P. (1990) Specificity of octopine uptake by Rhizobium and Pseudomonas strains. Appl Environ Microbiol 56: 1453–1458PubMedGoogle Scholar
  8. Binns A.N., Thomashow M.F. (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42: 575–606Google Scholar
  9. Bouzar H., Moore L.W. (1987) Isolation of different Agrobacterium biovars from a natural oak savanna and tall grass prairie. Appl Environ Microbiol 53: 717–721PubMedGoogle Scholar
  10. Braun A. (1982) A history of the crown gall problem In: Kahl G., Schell J.S. (eds) Molecular biology of plant tumors. Academic Press, New York, pp 155–210Google Scholar
  11. Buchanan-Wollaston V., Passiatore J.E., Cannon F. (1987) The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328: 172–175Google Scholar
  12. Buchmann I., Marner F.J., Schroder G., Waffenschmidt S., Schroder J. (1985) Tumor genes in plants: T-DNA encoded cytokinin biosynthesis. EMBO J 4: 853–859PubMedGoogle Scholar
  13. Cangelosi G.A., Hung L., Puvanesarajah V., Stacey G., Ozga D.A., Leigh J.A., Nester E.W. (1987) Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J Bacteriol. 169: 2086–2091PubMedGoogle Scholar
  14. Cangelosi G.A., Martinetti G., Leigh J.A., Lee C.C., Theines C., Nester E.W. (1989) Role of Agrobacterium tumefaciens Chv A protein in export of ß-1,2-glucan. J Bacteriol 171: 1609–1615PubMedGoogle Scholar
  15. Cangelosi G.A., Martinetti G., Nester E.W. (1990) Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic ß-l,2-glucan. J Bacteriol 172: 2172–2174PubMedGoogle Scholar
  16. Cardarelli M., Spano L., DePaolis A., Mauro M.L., Vitali G. (1985) Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes. 1855. Plant Mol Biol 5: 385–391Google Scholar
  17. Chelsky D., Ralph P., Jonak G. (1989) Sequence requirements for synthetic peptide-mediated translocation to the nuc1eus. Mol Cell Biol 9: 2487–2492PubMedGoogle Scholar
  18. Chilton M.-D., Drummond M.H., Merlo D.J., Sciaky D., Montoya A.L, Gordon M.P., Nester E.W. (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271Google Scholar
  19. Chilton M.-D., Saiki R.K., Yadav N., Gordon M.P., Quetier F. (1980) T-DNA from Agrobacterium Ti plasmid is in the nuc1ear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77: 4060–4064Google Scholar
  20. Christie P.J., Ward J.E., Winans S.C., Nester E.W. (1988) The Agrobacterium tumefaciens vir E2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 170: 2659–2667PubMedGoogle Scholar
  21. Christie P.J., Ward J.E., Gordon M.P., Nester E.W. (1989) A gene required for transfer of T-DNA to plants encodes an ATP-ase with autophosphorylating activity. Proc Natl Acad Sci USA 86: 9677–9681PubMedGoogle Scholar
  22. Chyi Y.S., Jorgensen R.A.. Goldstein O., Tanksley S.D., Loaiza-Figueroa F. (1986) Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet 204: 64–69Google Scholar
  23. Citovsky V., DeVos G., Zambryski P. (1988) Single-stranded DNA binding protein encoded by the vir E locus of Agrobacterium tumefaciens. Science 240: 501–504PubMedGoogle Scholar
  24. Close T.J., Tait R.C., Kado C.I. (1985) Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. J Bacteriol 164: 774–781Google Scholar
  25. Close T.J., Rogowsky P.M., Kado C.I., Winans S.C., Yanofsky M.F., Nester E.W. (1987) Dual control of the Agrobacterium tumefaciens Ti plasmid virulence genes. J Bacteriol 169: 5113–5118PubMedGoogle Scholar
  26. Das A. (1988) The A. tumejaciens vir E operon encodes a single stranded DNA binding protein. Proc Natl Acad Sci USA 85: 2609–2913Google Scholar
  27. De Cleene M. (1988) The susceptibility of plants of Agrobacterium: a discussion of the role of phenolic compounds. FEMS Microbiol Rev 54: 1–8Google Scholar
  28. De Iannino N.I., Ugalde R.A. (1989) Biochemical characterization of avirulent Agrobacterium tumefaciens chr A mutants: synthesis and excretion of ß-(l-2)glucan. J Bacteriol 171: 2842–2849PubMedGoogle Scholar
  29. De Vos G., Zambryski P. (1989) Expression of Agrobacterium nopaline-specific VirDl, VirD2, and VirCI proteins and their requirement for T-strand formation in E. coil. Mol Plant Microbe Interact 2: 43–52PubMedGoogle Scholar
  30. Djordjevic S.P., Chen H., Batley M., Redmond J.W., Rolfe B.G. (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J Bacteriol 169: 53–60PubMedGoogle Scholar
  31. Douglas C.J., Staneloni R.J., Rubin R.A., Nester E.W. (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence gene. J Bacteriol 161: 850–860PubMedGoogle Scholar
  32. Durrenberger F., Crameri A., Hohn B., Koukolikova-Nicola Z. (1989) Covalently bound Vir D2 protein of Agrobacterium tumefaciens protects the T-DNA from exonuc1eolytic degradation. Proc Natl Acad Sci USA 86: 9154–9158PubMedGoogle Scholar
  33. Dylan T., Ielpi L., Stanfield S., Kashyap L., Douglas C., Yanofsky M., Nester E., Helinski D.R., Ditta G. (1986) Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83: 4403–4407PubMedGoogle Scholar
  34. Ellis J.G., Murphy P.I. (1981) Four new opines from crown gall tumors—their detection and properties. Mol Gen Genet 181: 36–43Google Scholar
  35. Ellis J.G., Kerr A., Petit A., Tempe J. (1982) Conjugal transfer of nopaline and agropine Tiplasmids-the role of agrocinopines. Mol Gen Genet 186: 269–273Google Scholar
  36. Ellis J.G., Ryder M.H., Tate M.E. (1984) Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet 195: 466–473Google Scholar
  37. Ellis J.G., Llewellyn D.J., Walker J.C., Dennis E.S., Peacock W.J. (1987) The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer. EMBO J 6: 3203–3208PubMedGoogle Scholar
  38. Fraley R.T., Rogers S.G., Horsch R.B. (1986) Genetic transformation in higher plants. Crit Rev Plant Sci 4: 1–46Google Scholar
  39. Gaworzewska R.T., Carlile M.J. (1982) Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legurnes and other plants. J Gen Microbiol 128: 1179–1188Google Scholar
  40. Gietl C., Koukolikova-Nicola Z., Hohn B. (1987) The mobilization of the T-DNA from Agrobacterium to the plant cells involves a single-stranded DNA binding protein. Proc Natl Acad Sci USA 84: 9006–9010PubMedGoogle Scholar
  41. Gelvin S.B. (1990) Crown gall disease and hairy root disease: a siedgehammer and a tackhammer. Plant Physiol 92: 281–285PubMedGoogle Scholar
  42. Grimsley N., Hohn B., Ramos C., Kado C., Rogowsky P. (1989) DNA transferfrom Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol Gen Genet 217: 309–316PubMedGoogle Scholar
  43. Halverson L.J., Stacey G. (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50: 193–225PubMedGoogle Scholar
  44. Hawes M.C., Smith L.Y. (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J Bacteriol 171: 5668–5671PubMedGoogle Scholar
  45. Hawes M.C., Smith L.Y., Howarth A.J. (1988) Agrobacterium tumefaciens mutants deficient in chemotaxis to root exudates. Mol Plant Microbe Interact 1: 182–186Google Scholar
  46. Heinemann J.A., Sprague G.F (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacterial and yeast. Nature 340: 205–209Google Scholar
  47. Herrera-Estrella A., Chen Z., Van Montagu M., Wang K. (1988) Vir D proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5′ terminus of T-strand molecules. EMBO J 7: 4055–4062PubMedGoogle Scholar
  48. Hodgkin J., Kaiser D. (1977) Cell-to-cell stimulation of movements in nonmotile mutants of Myxococcus. Proc Natl Acad Sci USA 74: 2938–2942PubMedGoogle Scholar
  49. Holsters M., Villarroel R., Gielen J., Seurinck J., De Greve H., Van Montagu M., Schell J. (1983) An analysis of the boundaries of the octopine T L-DNA in tumors induced by Agrobacterium tumefaciens. Mol Gen Genet 190: 35–41Google Scholar
  50. Hooykaas P.J.J. (1989) Transformation of plant cells via Agrobacterium. Plant Mol Biol 13: 327–336PubMedGoogle Scholar
  51. Howard E.A., Winsor B.A., De Vos G., Zambryski P. (1989) Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: tight association of Vir D2 with the 5′ ends of T-strands. Proc Natl Acad Sci USA 86: 4017–4021PubMedGoogle Scholar
  52. Huang M.-L.W., Cangelosi G.A., Halperin W., Nester E.W. (1990) A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol 172: 1814–1822PubMedGoogle Scholar
  53. Huang Y., Morel P., Powell B., Kado C.I. (1990) Vir A, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172: 1142–1144PubMedGoogle Scholar
  54. Jayaswal R.K., Veluthambi K., Gelvin S.B., Slightom J.L. (1987) Double stranded T-DNA cleavage and the generation of single stranded T-DNA molecules in E. coli by a vir D encoded border specific endonuclease from A. tumefaciens. J Bacteriol 169: 5035–5045PubMedGoogle Scholar
  55. Ji J.M., Martinez A., Dabrowski M., Veluthambi K., Gelvin S.B., Ream W. (1988) The overdrive enhancer sequence stimulates production of T-strands from the Agrobacterium tumefaciens tumor-inducing plasmid. In: Staskawicz B., Ahlquist P., Yoder P. (eds) Molecular biology of plant-pathogen interactions. AR Liss, New York, pp 19–31 (UCLA Symp Mol Cell Biol)Google Scholar
  56. Jin S., Roitsch T., Ankenbauer R.G., Gordon M.P., Nester E.W. (1990a) The Vir A protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene induction. J Bacteriol 172: 525–530PubMedGoogle Scholar
  57. Jin S., Roitsch T., Christie P.J., Nester E.W. (1990b) The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172: 531–537PubMedGoogle Scholar
  58. Jorgensen R.A., Snyder C., Jones J.D.G. (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed in A. tumefaciens C58 derivatives. Mol Gen Genet 207: 471–477Google Scholar
  59. Joos H., Inze D., Caplan A., Sormann M., Van Montagu M., Schell J. (1983) Genetic analysis of T-DNA transeripts in nopaline crown gall. Cell 32: 1057–1067PubMedGoogle Scholar
  60. Kahl G. (1982) Molecular biology ofwound healing: the conditioning phenomenon. In: Kahl G., Schell J.S. (eds) Molecular biology of plant tumors. Academic Press, London, pp 211–268Google Scholar
  61. Kaiser D. (1989) Multicellular development in Myxobacteria. In: Hopwood D.A., Chater K.F. (nteds) Genetics of bacterial diversity. Academic Press, London, pp 243–263Google Scholar
  62. Kamoun S., Cooley M.B., Rogowsky U.M., Kado C.I. (1989) Two chromosomal loci involved in production of exopolysaccharide in Agrobacterium tumejaciens. J Bacteriol 171: 1755–1759PubMedGoogle Scholar
  63. Klapwijk P.M., Schilperoort R.A. (1979) Negative control of octopine degradation and transfer genes of octopine Ti plasmids in Agrobacterium tumefaciens. J Bacteriol 141: 424–431Google Scholar
  64. Klee H., Horsch R., Rogers S. (1987) Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu Rev Plant Physiol 38: 467–486Google Scholar
  65. Koukolikova-Nicola A., Shillita R.D., Hohn B., Wang K., Van Montagu M., Zambryski P. (1985) Involvement of circular intermediates in the transfer of T-DNA from Agrobacterium tumefaciens to plant cells. Nature 313: 191–196Google Scholar
  66. Koukolikova-Nicola Z., Albright L., Hohn B. (1987) The mechanism of T-DNA transfer from Agrobacterium tumefaciens to the plant cello. In: Hohn T., Schell J. (eds) Plant DNA infectious agents. Springer, Wien New York, pp 110–138 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  67. Krens F.A., Molendijk L., Wullems G.J., Schilperoort R.A. (1985) The role of bacterial attachment in the transformation of cell-wall-regenerating tobacco protoplasts by Agrobacterium tumefaciens. Planta 166: 300–308Google Scholar
  68. Kuldau G.A., DeVos G., Owen J., McCaffrey G., Zambryski P. (1990) The vir B operon of Agrobaclerium tumefaciens pTiC58 encodes 11 open reading frames. Mol Gen Genet 221: 256–266PubMedGoogle Scholar
  69. Kwok W.W., Nester E.W., Gordon M.P. (1985) Unusual plasmid DNA organization in an octopine crown gall tumor. Nucleic Acid Res 13: 459–471PubMedGoogle Scholar
  70. Leemans J., Deblaere R., Willmitzer L., DeGreve H., Hernalsteens J.P., Van Montagu M., Schell J. (1982) Genetic identification offunctional of TL-DNA transcripts in octopine crown galls. EMBO J 1: 147–152PubMedGoogle Scholar
  71. Leroux B., Yanofsky M.F., Winans S.C., Ward J.E., Zeigler S.F., Nester E.W. (1987) Characterization of the L’ir A locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 6: 849–856PubMedGoogle Scholar
  72. Lichtenstein D.P., Fuller S.L., (1987) Vectors for the genetic engineering of plants. In: Rigby P.W.J. (eds) Genetic engineering, vol 6. Academic Press, New York, pp 103–183Google Scholar
  73. Lippincott B.B., Lippincott J.A. (1969) Bacterial attachment to a specific wound site as essential stage in tumor initiation by Agrobacterium tumefaciens. J Bacteriol 97: 620–628PubMedGoogle Scholar
  74. McBride K.E., Knauf V.C. (1988) Genetic analysis of the vir E operon of the Agrobacterium Ti plasmid pTiA6. J Bacteriol 170: 1430–1437PubMedGoogle Scholar
  75. Machida Y., Usami S., Yamamoto A., Takebe I. (1986) Plant-inducible recombination between the 25-base-pair border sequence of T-DNA in Agrobacterium tumefaciens. Mol Gen Genet 204: 374–382Google Scholar
  76. Manoil C., Beckwith J. (1986) A genetic approach to analyzing membrane protein topology. Science 233: 1403–1408PubMedGoogle Scholar
  77. Matthysse A.G. (1983) Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 154: 906–915PubMedGoogle Scholar
  78. Matthysse A.G. (1987) Characterization of nonattaching mutants of Agrobacterium tumefaciens. J Bacteriol 169: 313–323PubMedGoogle Scholar
  79. Matthysse A.G., Holmes K.V., Gurlitz R.H.G. (1981) Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J Bacteriol 145: 583–595PubMedGoogle Scholar
  80. Melchers L.S., Thompson D.V., Idler K.B., Neuteboom T.C., deMaagd R.A., Schilperoort R.A., Hooykaas P.J.J. (1987) Molecular characterization of the virulence gene vir A of the Agrobacterium tumefaciens Ti plasmid. Plant Mol Biol 9: 635–645Google Scholar
  81. Melchers L.S. Regensburg-Tuink A.J.G., Schilperoort R.A., Hooykaas P.J.J. (1989a) Specificity of signal molecules on the activation of Agrobacterium virulence gene expression. Mol Microbiol 3: 969–977PubMedGoogle Scholar
  82. Melchers L.S. Regensburg-Tuink T.J.F., Bourret R.B., Sedee N.J.A., Schilperoort R.A., Hooykaas P.J.J. (1989b) Membrane topology and functional analysis of the sensory protein Vir A of Agrobacterium tumefaciens. EMBO J 8: 1919–1925PubMedGoogle Scholar
  83. Messens E., Lenaerts E.A., Van Montagu M., Hedges R.W. (1985) Genetic basis for opine secretion from crown gall tumor cells. Mol Gen Genet 199: 344–348Google Scholar
  84. Miller J.F., Mekalanos J.J., Falkow S. (1989) Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916–922PubMedGoogle Scholar
  85. Miller K.J., Kennedy E.P., Reinhold V.N. (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 213: 48–51Google Scholar
  86. Morris R.O. (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37: 509–538Google Scholar
  87. Morris R.O., Powell G.K. (1987) Genes specifying cytokinin biosynthesis in prokaryotes. Bioessays 6: 23–28Google Scholar
  88. Nester E.W., Gordon M.P., Amasino R.M., Yanofsky M.F. (1984) Crown gaU: a molecular and physiological analysis. Annu Rev Plant Physiol 35: 387–413Google Scholar
  89. Nixon B.T., Ronson C.W.. Ausubel F.M. (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntr Band ntr C. Proc Natl Acad Sci USA 83: 7850–7854PubMedGoogle Scholar
  90. Ochman H., Gerber A.S., Hartl D.L. (1988) Genetic application of an inverse polymerase chain reaction. Genetics 120: 621–623PubMedGoogle Scholar
  91. Otten L., De Greve H., Leemans J., Hain R., Hooykaas P., Schell J. (1984) Restoration of virulence of vir region mutants of Agrobacteriurn turnefaciens strain B6S3 by coinfection with normal and mutant Agrobacteriurn strains. Mol Gen Genet 195: 159–163Google Scholar
  92. Parke D., Ornston L.N., Nester E.W. (1987) Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J Bacteriol 169: 5336–5338PubMedGoogle Scholar
  93. Pazour G.J., Das A. (1990) vir G, an Agrobacterium turnefaciens transcriptional activator, initiates translation at a UUG eodon and in a sequence-specific DNA-binding protein. J Bacteriol 172: 1241–1249PubMedGoogle Scholar
  94. Peralta E.G., Ream L.W. (1985) T-DNA border sequence required for crown gaU tumorigenesis. Proc Natl Acad Sci USA 82: 5112–5116PubMedGoogle Scholar
  95. Peralta E.G., Hellmiss R., Ream L.W. (1986) Overdrive, a T-DNA transmission enhaneer on the A. turnefaciens tumor-inducing plasmid. EMBO J 5: 1137–1142PubMedGoogle Scholar
  96. Petit A., Tempe J. (1985) The function Of T-DNA in nature. In: van Vloten-Doting L., Groot G., Hall T. (eds) Molecular form and function of the plant genome. Plenum, New York, pp 625–636Google Scholar
  97. Ream W. (1989) Agrobacterium turnefaciens and interkingdom genetic exchange. Annu Rev Phytopathol 27: 583–618Google Scholar
  98. Regier D.A., Akiyoshi D.E., Gordon M.P. (1989) Nucleotide sequence of the tzs gene from Agrobacterium rhizogenes strain A4. N ucleic Acids Res 17: 88–85Google Scholar
  99. Ronson C.W., Nixon B.T., Ausubel F.M. (1987) Conserved domains in bacterial regulatory proteins that respond 10 environmental stimuli. Cell 49: 579–581PubMedGoogle Scholar
  100. Schmü lling T., Schell J., Spena A. (1988) Single genes from Agrobacterium rhizogenes inftuence plant development. EMBO J 7: 2621–2629Google Scholar
  101. Schroder G., Waffenschmidt S., Weiler E.W., Schroder J. (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138: 387–391PubMedGoogle Scholar
  102. Sen P., Pazour G.I., Anderson D., Das A. (1989) Cooperative binding of Agrobacterium tumefaciens Vir E2 protein to single-stranded DNA. 1 Bacteriol 171: 2573–2580Google Scholar
  103. Shaw C.H., Watson M.D., Carter G.H., Shaw C.H. (1984) The right hand copy of the nopaline Ti plasmid 25 bp repeat is required for tumor formation. Nucleic Acids Res 12: 6031–6041PubMedGoogle Scholar
  104. Shaw C.H.J., Ashby A.M., Brown A., Royal C., Loake G.J., Shaw C.H. (1989) Vir A and Gare necessary for acetosyringone chemotaxis in Agrobacterium tumefaciens. Mol Microbiol 2: 413–417Google Scholar
  105. Shen W.H., Petit A., Guern J., Tempe J. (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85: 3417–3421PubMedGoogle Scholar
  106. Simpson R.B., O’Hara P.J., Kwok W., Montoya A.L., Licktenstein C., Gordon M.P., Nester E.W. (1982) DNA from the A6S/2 crown gall tumor contains scrambled Ti plasmid sequences near its junctions with the plant DNA. Cell 29: 1005–1014PubMedGoogle Scholar
  107. Singh K., Tokuhis J.G., Dennis E.S., Peacock W.J. (1989) Saturation mutagenesis of the octopine synthase enhancer: correlation of mutant phenotypes with binding of a nuclear pro tein factor. Proc Natl Acad Sci USA 86: 3733–3737PubMedGoogle Scholar
  108. Sinkar V.P., White F.F., Gordon M.P. (1987) Molecular biology of Ri plasmid: a review. J Biosci 11: 47–58Google Scholar
  109. Sinkar V.P., Pythoud F., White F.F., Nester E.W., Gordon M.P. (1988) rol A locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Genes Dev 2: 688–697PubMedGoogle Scholar
  110. Smith E.F., Townsend C.O. (1907) A plant-tumour of bacterial origin. Science 25: 671–673PubMedGoogle Scholar
  111. Spanier K., Schell J., Schreier P.H. (1989) A functional analysis of T-DNA gene 6b: the fine tuning of cytokinin effects on shoot development. Mol Gen Genet 219: 209–216PubMedGoogle Scholar
  112. Spena A., Schmülling T., Koncz C., Schell J.S. (1987) Independent and synergistic activity of rot A, B, and C loci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899PubMedGoogle Scholar
  113. Spencer P.A., Towers G.H.N. (1988) Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27: 2781–2785Google Scholar
  114. Spielman A., Simpson R.B. (1986) T-DNA structure in transgenic tobacco plants with multiple independent integration sites. Mol Gen Genet 205: 34–41Google Scholar
  115. Stachel S.E., Nester E.W. (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J5: 1445–1454PubMedGoogle Scholar
  116. Stachel S.E., Zambryski P.C. (1986a) vir A and vir G control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46: 325–333PubMedGoogle Scholar
  117. Stachel S.E., Zambryski P.C.(1986b) Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47: 155–157PubMedGoogle Scholar
  118. Stachel S.E., Zambryski P.C.(1989) Generic trans-kingdom sex? Nature 340: 190–191PubMedGoogle Scholar
  119. Stachel S.E., Messens E., Van Montagu M., Zambryski P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629Google Scholar
  120. Stachel S.E., Nester E.W., Zambryski P. (1986a) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379–383PubMedGoogle Scholar
  121. Stachel S.E., Timmerman B., Zambryski P. (1986b) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322: 706–712Google Scholar
  122. Stachel S.E., Timmerman B., Zambryski P. (1987) Activation of Agrobacterium tumefaciens vir gene expression gene rates multiple single-stranded T-strand molecules from the pTiA6 region: requirement for 5′ rir D products. EMBO J 6: 857–863PubMedGoogle Scholar
  123. Steck T.R., Close T.J., Kado C.I. (1989) High levels of double-stranded transferred DNA (T-DNA) processing from an intact nopaline Ti plasmid. Proc Natl Acad Sci USA 86: 2133–2137PubMedGoogle Scholar
  124. Stock J.B., Ninfa A.J., Stock A.M. (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490PubMedGoogle Scholar
  125. Tempe J., Goldmann A. (1982) Occurrence and biosynthesis of opines. In: Kahl G., Schell J. (eds) Molecular biology of plant tumors. Academic Press, New York, pp 427–449Google Scholar
  126. Tempe J., Petit A. (1982) Opine utilization by Agrobacterium. In: Kahl G., Schell J. (eds) Molecular biology of plant tumors. Academic Press, New York, pp 451–459Google Scholar
  127. Thomashow M.F., Nutter R., Montoya A.L., Gordon M.P., Nester E.W. (1980) Integration and organization of Ti plasmid sequences in crown gall tumors. Cell 19: 729–739PubMedGoogle Scholar
  128. Thomashow L.S., Reeves S., Thomashow M.F. (1984) Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc Natl Acad Sci USA 81:5071–5075PubMedGoogle Scholar
  129. Thomashow M.F., Karlinsey J.E., Marks J.R., Hurlbert R.E. (1987) Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J Bacteriol 169: 3209–3216PubMedGoogle Scholar
  130. Thompson D.V., Melchers L.S., Idler K.B., Schilperoort R.A., Hooykaas P.J.J. (1988) Analysis of the complete nuc1eotide sequence of the Agrobacterium tumefaciens vir B operon. Nuc1eic Acids Res 16: 4621–4636Google Scholar
  131. Tinland B, Huss B., Paulus F., Bonnard G., Otten L. (1989) Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as weil as cytokinin genes. Mol Gen Genet 219: 217–224Google Scholar
  132. Toro N., Datta A., Yanofsky M., Nester E. (1988) Role of the overdrive sequence in T-DNA border c1eavage in Agrobacterium. Proc Natl Acad Sci USA 85: 8558–8562PubMedGoogle Scholar
  133. Toro N., Datta A., Carmi O.A., Young C., Prusti R.K., Nester E.W.(1989) The Agrobacterium tumejaciens vir eIgene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171: 6845–6849PubMedGoogle Scholar
  134. Ursic D., Slightom J.L., Kemp J.D. (1983) A. tumefaciens T-DNA integrates into multiple sites of the sunftower crown gall genome. Mol Gen Genet 190: 494–503Google Scholar
  135. Veluthambi K., Jayaswal R.K., Gelvin S.B. (1987) Virulence genes A, G, and D mediate the double stranded border c1eavage of T-DNA from the Agrobacterium Ti plasmid. Proc Natl Acad Sci USA 84: 1881–1885PubMedGoogle Scholar
  136. Veluthambi K., Krishnan M., Gould J.H., Smith R.H., Gelvin S.B. (1989) Opines stimulate induction of the vir genes of Agrobacterium tumefaciens Ti plasmid. J Bacteriol 171: 3696–3703PubMedGoogle Scholar
  137. Virts E.L., Gelvin S.B. (1985) Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciens to Petunia protoplasts. J Bacteriol 162: 1030–1038PubMedGoogle Scholar
  138. Wang K., Herrera-Estrella L., Van Montagu M., Zambryski P. (1984) Right 25 bp terminus sequences of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 35–41Google Scholar
  139. Wang K., Genetello C., Van Montagu M., Zambryski P. (1987a) Sequence context of the TDNA border repeat element determines its relative activity during T-DNA transfer to plant cells. Mol Gen Genet 210: 338–346Google Scholar
  140. Wang K., Stachel S.E., Timmerman B., Van Montagu M., Zambryski P. (1987b) Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587–591PubMedGoogle Scholar
  141. Ward E.R., Barnes W.M. (1988) Vir D2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242: 927–930Google Scholar
  142. Ward J.E., Akiyoski D.E., Regier D., Datta A., Gordon M.P., Nester E.W. (1988) Character ization of the vir B operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263: 5804–5814PubMedGoogle Scholar
  143. Ward J.E., Akiyoski O.E., Regier D., Datta A., Gordon M.P., Nester E.W. (1990a) Correction: characterization of the l’ir B operon from an Agrobacterium tumefaciens Ti plasmid. J Biol Chem 265: 4768PubMedGoogle Scholar
  144. Ward J.E., Dale E.M., Christie P.J., Nester E.W., Binns A.N. (1990b) Complementation analysis of Agrobacterium tumefaciens Ti plasmid virB genes by use of a vir promoter expression vector; virB9, virB10, and virB11 are essential virulence genes. J Bacteriol 172: 5187–5199PubMedGoogle Scholar
  145. Weiler E.W., Schroder J. (1987) Hormone genes and crown gall disease. Trends Biochem Sci 12: 271–275Google Scholar
  146. Weising K., Schell J., Kahl G. (1989) Foreign genes in plants: transfer, structure, expression and applications. Annu Rev Genet 22: 421–477Google Scholar
  147. White F.F. (1990) Vectors for gene transfer in higher plants. In:Kung S.-D., Arntzen C.J. (eds) Plant biotechnology. Butterworths, Boston, pp 3–34Google Scholar
  148. White F.F., Nester E.W. (1980) Hairy root plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141: 1134–1141PubMedGoogle Scholar
  149. White F.F., Sinkar V.P. (1987) Agrobacterium rhizogenes. In: Hohn T., Schell J. (eds) Plant DNA infectious agents. Springer, Wien New York, pp 149–178 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  150. Willetts N., Skurray R. (1987) Structure and junction of the F factor and mechanism of conjugation. In: Neidhardt F.C., Ingraham J.L., Low K.B., Magasanik B., Schaechter M., Umbarger H.E. (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 2. American Society for Microbiology, Washington, OC, pp 1110–1133Google Scholar
  151. Willmitzer L., Schmalenbach W., Schell J. (1981) Transcription of T-DNA in octopine and nopaline crown gall tumours is inhibited by low concentrations of a-aminitin. Nucleic Acids Res 9: 4801–4812PubMedGoogle Scholar
  152. Winans S.C. (1990) Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation and acidic growth media. J Bacteriol 172: 2433–2438PubMedGoogle Scholar
  153. Winans S.C., Walker G.C. (1985) Conjugal transfer system of the N incompatibility plasmid pKM101. J Bacteriol 161: 402–410PubMedGoogle Scholar
  154. Winans S.C., Ebert P.R., Stachel S.E., Gordon M.P., Nester E.W. (1986) A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci 83: 82788282Google Scholar
  155. Winans S.C., Kerstetter R.A., Nester E.W. (1988) Transcriptional regulation of the vir A and vir G genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047–4054PubMedGoogle Scholar
  156. Winans S.C., Kerstetter R.A., Ward J.E., Nester E.W. (1989) A protein required for transcriptional regulation of Agrobacterium virulence genes spans the cytoplasmic membrane. J Baeteriol 171: 1616–1622Google Scholar
  157. Willmitzer L., Debeuckeleer M., Lemmers M., Van Montagu M., Schell J. (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287: 359–361Google Scholar
  158. Yadav N.S., Vanderlayden J., Bennett D.R., Barnes W.M., Mary-Dell Chilton (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6326PubMedGoogle Scholar
  159. Yanofsky M.F., Porter S.G., Young C., Albright L.A., Gordon M.P., Nester E.W. (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonucIease. Cell 47: 471–477PubMedGoogle Scholar
  160. Young C., Nester E.W. (1988) Association of the Vir02 protein with the 5′ end ofT strands in Agrobacterium tumefaciens. J Bacteriol 170: 3367–3374PubMedGoogle Scholar
  161. Zambryski P. (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet 22: 1–30PubMedGoogle Scholar
  162. Zambryski P., Depicker A., Kruger K., Goodman H. (1982) Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. J Mol Appl Genet 1: 361–370PubMedGoogle Scholar
  163. Zambryski P., Tempe J., Schell J. (1989) Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201PubMedGoogle Scholar
  164. Zoŕreguieta A., Ugalde R.A. (1986) Formation in Rhizobium and Agrobacterium spp. ofa 235-kilodalton protein intermediate in ß-D(l-2)glucan synthesis. J Bacteriol 167: 947–951PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Stephen C. Winans
    • 1
  1. 1.Section of MicrobiologyCornell UniversityIthacaUSA

Personalised recommendations