Pathogen Avirulence Genes and Elicitors of Plant Defense

  • Noel T. Keen
  • William O. Dawson
Part of the Plant Gene Research book series (GENE)


The hypersensitive response (HR) is an active, inducible defense reaction employed by plants against pathogens. Its main superficial feature is the rapid necrosis of plant cells surrounding the infection site of an invading pathogen. Of more functional importance, 30 or more plant genes are specifically derepressed following recognition of a pathogen, some of which account for the inhibition of subsequent pathogen invasion. These ‘defense response genes’ control a wide range of expressive mechanisms associated with the HR, including the production of chitinases, antiviral proteins, protease inhibitors, ß-1,3 glucanases and hydroxyproline-rich glycoproteins as well as encoding enzymes involved in the production of lignin, callose and phytoalexins at the infection site.


Coat Protein Tobacco Mosaic Virus Coat Protein Gene Disease Resistance Gene Avirulence Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldaoud R., Dawson W.O., Jones G.E. (1989) Rapid, random evolution of the genetic structure of replicating tobacco mosaic virus populations. Intervirology 30: 227–233PubMedGoogle Scholar
  2. Alt F.W., Blackwell T.K., Yancopoulos G.D. (1987) Development of the primary antibody repertoire. Science 238: 1079–1087PubMedCrossRefGoogle Scholar
  3. Anderson A.J. (1989) The biology of glycoporteins as elicitors. In: Kosuge T., Nester E.W. (eds) Plant-microbe interactions. Molecular and genetic perspectives, vol 3. Macmillan, New York, pp 87–130Google Scholar
  4. Apostol I, Heinstein P.F., Low P.S. (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90: 109–116PubMedCrossRefGoogle Scholar
  5. Atkinson M.M., Keppler L.D., Orlandi E.W., Baker C.J., Mischke C.F. (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K + /H + and hypersensitive responses in tobacco. Plant Physiol 92: 215–221PubMedCrossRefGoogle Scholar
  6. Ayers A.R., Ebel J., Valent B., Albersheim P. (1976) Host-pathogen interactions. X. Fractionation and biological activity of an elictior isolated from the mycelial walls of Phytophthora mega sperm a var. sojae. Plant Physiol 57: 760–765PubMedCrossRefGoogle Scholar
  7. Barber M.S., Bertram R.E., Ride J.P. (1989) Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Pathol 34: 3–12CrossRefGoogle Scholar
  8. Bennetzen J.L., Qin M.-M, Ingels S., Ellingboe A.H. (1988) Allele-specific and mutator-associated instability at the RpJ disease-resistance locus of maize. Nature 332: 369–370CrossRefGoogle Scholar
  9. Bloch C.B., De Wit P.J.G.M., Kuc J. (1984) Elicitation of phytoalexins by arachidonic and eicosapentaenoic acids: a host survey. Physiol Plant Pathol 25: 199–208CrossRefGoogle Scholar
  10. Bonas U., Stall R.E., Staskawicz B. (1989) Molecular and structural characterization of the avirulence gene avr Bs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218: 127–136PubMedCrossRefGoogle Scholar
  11. Bonneville J.M., Sanfacon H., Fiitterer J., Hohn T. (1989) Posttranscriptional trans-activation in cauliflower mosaic virus. Cell 59: 1135–1143PubMedCrossRefGoogle Scholar
  12. Bostock R.M., Kuć J.A., Laine R.A. (1981) Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212: 67–69PubMedCrossRefGoogle Scholar
  13. Bowler C., Alliotte T., De Loose M, van Montagu M., Inzé D. (1989) The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8:31–38PubMedGoogle Scholar
  14. Bruce R.J., West C.A. (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91: 889–897PubMedCrossRefGoogle Scholar
  15. Bruegger B.B., Keen N.T. (1979) Specific elicitors of glyceollin accumulation in the Pseudo-monas glycinea-soybean host-parasite system. Physiol Plant Pathol 15: 43–51CrossRefGoogle Scholar
  16. Buonaurio R., Torre G.D., Montalbini P. (1987) Soluble superoxide dismutase (SOD) in susceptible and resistant host-parasite complexes of Phaseolus vulgaris and Uromyces phaseoli. Physiol Mol Plant Pat hol 31: 173–184CrossRefGoogle Scholar
  17. Callow J.A. (1977) Recognition, resistance and the role of plant lectins in host-parasite interactions. Adv Bot Res 4: 1–49CrossRefGoogle Scholar
  18. Cervone F., Hahn M.G., DeLorenzo G., Darvill A., Albersheim P. (1989) Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenicity factor into an elicitor of plant defense response. Plant Physiol 90: 542–548PubMedCrossRefGoogle Scholar
  19. Collinge D.B., Slusarenko A.J. (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9: 389–410CrossRefGoogle Scholar
  20. Collinge D.B., Slusarenko A.J. (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9: 389–410CrossRefGoogle Scholar
  21. Cosio E.G., Popperl H., Schmidt W.E., Ebel J. (1988) High-affinity binding of fungal ß-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts. Eur J Biochem 175: 309–315PubMedCrossRefGoogle Scholar
  22. Cramer C.L., Edwards K., Dron M., Liang X., Dildine S.L., Bolwell G.P., Dixon R.A., Lamb C.l., Schuch W. (1989) Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol 12: 367–383CrossRefGoogle Scholar
  23. Culver J.N., Dawson W.O. (1989a) Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in Nicotiana sylvestris. Mol Plant Microbe Interact 2:209–213CrossRefGoogle Scholar
  24. Culver J.N., Dawson W.O. (l989b) Tobacco mosaic virus coat protein: an elicitor of the hypersensitive reaction but not required for the development of mosaic symptoms in Nicotiana sylvestris. Virology 173: 755–758Google Scholar
  25. Daniels C.H., Fritensky B., Wagoner W., Hadwiger L.A. (1987) Pea genes associated with nonhost disease resistance to Fusarium are also active in race-specific disease resistance to Pseudomonas. Plant Mol Biol 8: 309–316CrossRefGoogle Scholar
  26. Davis K.R., Darvill A.G., Albersheim P. (1986) Host-pathogen interactions. XXXI. Several biotic and abiotic elicitors act synergistically in the induction of phytoalexin accumulation in soybean. Plant Mol Biol 6: 23–32CrossRefGoogle Scholar
  27. Dawson W.O., Bubrick, P., Grantham, G.L. (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology. Phytopathology 78: 783–789CrossRefGoogle Scholar
  28. Day P. (1974) Genetics of host-parasite interactions. Freeman, San FranciscoGoogle Scholar
  29. De Wit P.J.G.M. (1992) Functional models to explain gene-for-gene relationships in plant-pathogen interactions. In:Boller T., Meins F (eds) Genes involved in plant defense. Springer. Wien New York. pp 25–47 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  30. De Wit P.J.G.M., Hoffman A.E., Velthuis G.C.M, Kuć J.A. (1985) Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulcum (Syn. Fulvia fulva) and tomato. Plant Physiol 77: 642–647PubMedCrossRefGoogle Scholar
  31. Dickman M.B., Podila G.K., Kolattukudy P.E. (1989) Insertion ofcutinase gene into a wound pathogen enables it to infect intact host. Nature 342;446–448CrossRefGoogle Scholar
  32. Dixon R.A. (1986) The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61: 239–291CrossRefGoogle Scholar
  33. Djordjevic M.A., Rolfe B.G., Lewis-Henderson W. (1992) An analysis of host range specificity of Rhizobium as a model system for virulence genes in phytobacteria. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer, Wien New York, pp 51–83 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  34. Doke N. (1985) NADPH-dependent O2 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322CrossRefGoogle Scholar
  35. Doke N., Ohashi Y. (1988) Involvement of an O2 generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol Mol Plant Pathol 32: 163–175CrossRefGoogle Scholar
  36. Doke N., Garas N.A., Kuć J. (1979)Partial characterization and aspects of the mode of action of a hypersensitivity-inhibiting factor (HIF) isolated from Phytophthora infestans. Physiol Plant Pathol 15: 127–140CrossRefGoogle Scholar
  37. Dron M., Clouse S.D., Dixon R.A., Lawton M.A., Lamb C.J. (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electro po rated protoplasts. Proc Natl Acad Sci USA 85: 6738–6742PubMedCrossRefGoogle Scholar
  38. Ebel J., Grisebach G. (1988) Defense strategies of soybean against the fungus Phytophthora megasperma f. sp. glycinea: a molecular analysis. Trends Biochem Sci 13: 23–27PubMedCrossRefGoogle Scholar
  39. Ebel J., Scheel D. (1992) Elicitor recognition and signal transduction. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer, Wien New York, pp 183–205 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  40. Ellingboe A.H. (1981) Changing concepts in host-pathogen genetics. Annu Rev Phytopathol 19: 125–143CrossRefGoogle Scholar
  41. Ellis J.G., Lawrence G.J., Peacock W.J., Pryor A.J. (1988) Approaches to cloning plant genes conferring resistance to fungal pathogens. Annu Rev Phytopathol 26: 245–263CrossRefGoogle Scholar
  42. Farmer E.E., Helgeson J.P. (1987) An extracellular protein from Phytophthora parasitica var. nicotianae is associated with stress metabolite accumulation in tobacco callus. Plant Physiol 85: 733–740PubMedCrossRefGoogle Scholar
  43. Flor H.H. (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32: 653–669Google Scholar
  44. Funatsu G., Fraenkel-Conrat H. (1964) Location of amino acid exchanges in chemically evoked mutants of tobacco mosaic virus. Biochemistry 3: 1356–1362PubMedCrossRefGoogle Scholar
  45. Gabriel D.W. (1989) Genetics of plant parasite populations and host-parasite specificity. In: Kosuge T., Nester E.W. (eds) Plant-microbe interactions. Molecular and genetic perspectives, vol 3. McGraw-Hill, New York, pp 343–379Google Scholar
  46. Gabriel D.W., Burges A., Lazo G.R. (1986) Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proc Natl Acad Sci USA 83: 6415–6419PubMedCrossRefGoogle Scholar
  47. Gabriel D.W., Loschke D.C., Rolfe B.G. (1988) Gene-for-gene recognition: the ion channel defense model. In: Palacios R., Verma D.P.S. (eds) Molecular genetics of plant-microbe interactions 1988. American Phytopathological Society, St. Paul MN, pp3–14Google Scholar
  48. Gowda S., Wu F.C., Scholthof H.B., Shepherd R.J. (1989) Gene VI of figwort mosaic virus (caulimovirus group) functions in posttranscriptional expression of genes on the fulllength RNA transcript. Proc Natl Acad Sci USA 86: 9203–9207PubMedCrossRefGoogle Scholar
  49. Grab D., Feger M., Ebel J. (1989) An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor-challenged cells. Planta 179: 340–348CrossRefGoogle Scholar
  50. Hamdan M.A.M.S., Dixon R.A. (1987) Fractionation and properties of elicitors of the phenylpropanoid pathway from culture filtrates of Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 31: 91–103CrossRefGoogle Scholar
  51. Hargreaves J.A., Bailey J.A. (1978) Phytoalexin production by hypocotyls of Phaseolus vulgaris in response to constitutive metabolites released by damaged bean cells. Physiol Plant Pathol 13: 89–100CrossRefGoogle Scholar
  52. Heath M.C. (1980) Effects of infection by compatible species or injection of tissue extracts on the susceptibility of nonhost plants to rust fungi. Phytopathology 70: 356–360CrossRefGoogle Scholar
  53. Hitchin F.E., Jenner C.E., Harper S., Mansfield J.W., Barber, C.E., Daniels M.J. (1989) Determinant of cultivar specific avirulence cloned from Pseudomonas syringae pv. phaseolicola race 3. Physiol Mol Plant Pathol 34: 309–322CrossRefGoogle Scholar
  54. Holdsworth M.J., Laties G.G. (1989) Identification of a wound-induced inhibitor of a nuclear factor that binds the carrot extensin gene. Planta 180: 74–81CrossRefGoogle Scholar
  55. Huang H.-C., Schuurink R., Denny T.P., Atkinson M.M., Baker C.J., Yucel I., Hutcheson S.W., Collmer A. (1988) Molecular cloning of Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fiuorescens to elicit the hypersensitive response in tobacco plants. J Bacteriol 170: 4748–4756PubMedGoogle Scholar
  56. Hutcheson S.W., Collmer A., Baker C.J. (1989) Elicitation of the hypersensitive response by Pseudomonas syringae. Physiol Plant 76: 155–163CrossRefGoogle Scholar
  57. Islam M.R., Shepherd K.W., Mayo G.M.E. (1989) Recombination among genes at the L group in flax conferring resistance to rust. Theor Appl Genet 77: 540–546CrossRefGoogle Scholar
  58. Jackson A.O., Hunter B.G., Gustafson G.D. (1989) Hordeivirus relationships and genome organization. Annu Rev Phytopathol 27: 95 121CrossRefGoogle Scholar
  59. Jin D.-F., West C.A. (1984) Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol 74: 989–992PubMedCrossRefGoogle Scholar
  60. Jones E.Y., Stuart D.I., Walker N.P.C. (1989) Structure of tumour necrosis factor. Nature 338:225–228CrossRefGoogle Scholar
  61. Kauffman S., Legrand M., Geoffrey P., Fritig B. (1987) Biological function of pathogenesisrelated proteins: four PR proteins of tobacco have 1,3-ß-glucanase activity. EMBO J 6: 3209–3212.Google Scholar
  62. Keen N.T. (1990) Gene-for-gene complementary in plant-pathogen interactions. Annu Rev Genetics 24: 441–463CrossRefGoogle Scholar
  63. Keen N.T., Bruegger B. (1977) Phytoalexins and chemicals that elicit their production in plants. ACS Symp Ser 62: 1–26CrossRefGoogle Scholar
  64. Keen N.T., Buzzell R.I., (1991) New disease resistance genes in soybean against Pseudomonas syringae pv.glycinea: evidence that one of them interacts with a bacterial elicitor. Theor Appl Genet 81: 133–138CrossRefGoogle Scholar
  65. Keen N.T., Legrand M. (1980) Surface glycoproteins: evidence that they may function as the race specific phytoalexin elicitors of Phytophthora megasperma f. sp. glycinea. Physiol Plant Pathol 17:175–192CrossRefGoogle Scholar
  66. Keen N.T., Staskawicz B. (1988) Host range determinants in plant pathogens and symbionts. Annu Rev Microbiol 42: 421–440CrossRefGoogle Scholar
  67. Keen N.T., Yoshikawa M. (1983) ß-1,3-endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol 71: 46–465Google Scholar
  68. Keen N.T., Tamaki S., Kobayashi D.Y., Gerhold D., Stayton M., Shen H., Gold S., Lorang J., Thordal-Christensen H., Dahlbeck D., Staskawicz B. (1990) Bacteria expressing avirulence gene 0 produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant Microbe Interact 3: 112–121CrossRefGoogle Scholar
  69. Kelemu S., Leach J.E. (1990) Cloning and characterization of an avirulence gene from Xanthomonas campestris pv. oryzae. Mol Plant Microbe Interact 3: 59–65CrossRefGoogle Scholar
  70. Kendra D.F., Hadwiger L.A. (1987) Cell death and membrane leakage not associated with the induction of disease resistance in peas by chit os an or Fusarium solani f. sp. phaseoli. Phytopathology 77: 100–106CrossRefGoogle Scholar
  71. Kendra D.F., Christian D., Hadwiger L.A. (1989) Chitosan oligomers from Fusarium solani/pea interactions, chitinase/B-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol Mol Plant Pathol 35: 215–230CrossRefGoogle Scholar
  72. Keppler L.D., Novacky A. (1987) The initiation of membrane lipid peroxidation during bacteria-induced hypersensitive reaction. Physiol Mol Plant Pathol 30: 233–245CrossRefGoogle Scholar
  73. Keppler L.D., Novacky A. (1989) Changes in cucumber cotyledon membrane lipid fatty acids during paraquat treatment and a bacteria-induced hypersensitive reaction. Phytopathology 79: 705–708CrossRefGoogle Scholar
  74. Keppler L.D., Baker C.J., Atkinson M.M. (1989) Active oxygen production during a bacteriainduced hypersensitive reaction in tobacco suspension cells. Phytopathology 79: 974–978CrossRefGoogle Scholar
  75. Kinet J.-P. (1989) Antibody-cell interactions: Fc receptors. Cell 57: 351–354PubMedCrossRefGoogle Scholar
  76. Knorr D.A., Dawson W.O. (1988) A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana syluestris. Proc Natl Acad Sci USA 85:170–174PubMedCrossRefGoogle Scholar
  77. Kobayashi D.Y., Tamaki S.J., Keen N.T. (1989) Cloned avirulence genes from the tomato pathogen, Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci USA 86: 157–161PubMedCrossRefGoogle Scholar
  78. Kobayashi D.Y., Tamaki S.J., Keen N.T. (1990a) Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 3: 94–102PubMedCrossRefGoogle Scholar
  79. Kobayashi D.Y., Tamaki S.J., Trollinger D.J., Gold S., Keen N.T. (1990b) A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P. s. pv. tomato but devoid of the avirulence phenotype. Mol Plant Microbe Interact 3: 103–111PubMedCrossRefGoogle Scholar
  80. Kogel G., Beissmann R. Reisener H.J., Kogel K.H. (1988) A single glycoprotein from Puccinia graminis f. sp. tritici cell walls elicits the hypersensitive lignification response in wheat. Physiol Mol Plant Pathol 33: 173–185CrossRefGoogle Scholar
  81. Köhle H., Jeblick W., Poten F., Blaschek W., Kauss H. (1985) Chitosan-elicited callose synthesis in soybean cells as a Cal+-dependent process. Plant Physiol 77: 544–551PubMedCrossRefGoogle Scholar
  82. Kolattukudy P.E. (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23: 223–250CrossRefGoogle Scholar
  83. Kuć J., Rush J.S. (1985) Phytoalexins. Arch Biochem Biophys 236: 455–472PubMedCrossRefGoogle Scholar
  84. Kurosaki F., Tsurusawa Y., Nishi A. (1987a) The elicitation of phytoalexins by Ca T + and cyclic AMP in carrot cells. Phytochemistry 26: 1919–1923CrossRefGoogle Scholar
  85. Kurosaki F., Tsurusawa Y., Nishi A. (1987b) Breakdown of phosphatidylinositol during the elicitation of phytoalexins produced in cultured carrot cells. Plant Physiol 85: 601–604PubMedCrossRefGoogle Scholar
  86. Lamb C.J., Lawton M.A., Dron M., Dixon R.A. (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224PubMedCrossRefGoogle Scholar
  87. Legrand M., Kauffmann S., Geoffroy P., Fritig B. (1987) Biological function of pathogenesisrelated proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754PubMedCrossRefGoogle Scholar
  88. Lindner W.A., Hoffmann C., Grisebach H. (1988) Rapid elicitor-induced chemiluminescence in soybean cell suspension cultures. Phytochemistry 27: 2501–2503CrossRefGoogle Scholar
  89. Litzenberger S.C. (1949) Nature of susceptibility to Helminthosporium victoriae and resistance to Puccnia coronata in Victoria oats. Phytopathology 39: 300–318Google Scholar
  90. Lois R., Dietrich A., Hahlbrock K., Schulz W. (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cisacting elements. EMBO J 8: 1641–1648PubMedGoogle Scholar
  91. McIntosh R.A. (1976) Genetics of wheat and wheat rusts since Farrer. J Austr Inst Agricult Sci: 203–216Google Scholar
  92. Mayama S., Tani T., Ueno T., Midland S.L., Sims J.J., Keen N.T. (1986) The purification of victorin and its phytoalexin elicitor activity in oat leaves. Physiol Mol Plant Pathol 29: 1–18CrossRefGoogle Scholar
  93. Mellano V.J., Cooksey D.A. (1988) Development of host range mutants of Xanthomonas campestris pv. translucens. Appl Environ Microbiol 54: 884–889PubMedGoogle Scholar
  94. Minsavage G.V., Dahlbeck D., Whalen M.C,. Kearney B., Bonas U., Staskawicz B.J., Stall R.E. (1990) Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Mol Plant Microbe Interact 3: 41–47CrossRefGoogle Scholar
  95. Moerschbacher B., Kogel K.H., Noll U., Reisener H.J. (1986) An elicitor of the hypersensitive lignification response in wheat leaves isolated from the rust fungus Puccinia graminis f. sp. tritici. I. Partial purification and characterization. Z Naturforsch 41c: 830–838Google Scholar
  96. Napoli C., Staskawicz B. (1987) Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv. glycinea. J Bacteriol 169: 572–578PubMedGoogle Scholar
  97. Nothnagel E.A., McNeil M., Albersheim P., Dell A. (1983) Host-pathogen interactions XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71: 916–926PubMedCrossRefGoogle Scholar
  98. Ocampo C.A., Moerschbacher B., Grambow H.J. (1986) Increased lipoxygenase activity is involved in the hypersensitive response of wheat leaf cells infected with virulent rust fungi or treated with fungal elicitor. Z Naturforsch 41c: 559–563Google Scholar
  99. Oku H., Shiraishi T., Ouchi S. (1987) Role of specific suppressors in pathogenesis of Mycosphaerella species. In: Nishimura S., Vance C.P., Doke N. (eds) Molecular determinants of plant diseases. Springer, Tokyo, Berlin, Heidelberg, New York, pp145–156Google Scholar
  100. Parker J.E., Hahlbrock K., Scheel D. (1988) Different cell-wall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176: 75–82CrossRefGoogle Scholar
  101. Pavlovkin J., Novacky A., Ulrich-Eberius C.I. (1986) Membrane potential changes during bacteria-induced hypersensitive reaction.Physiol Mol Plant Pat hol 28: 125–135Google Scholar
  102. Peever T.L., Higgins V.J. (1989a) Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiol 90: 867–875PubMedCrossRefGoogle Scholar
  103. Peever T.L., Higgins V.J. (1989b) Suppression of the activity of non-specific elicitor from Cladosporium fulvum by intercellular fluids from tomato leaves. Physiol Mol Plant Pathol 34: 471–482CrossRefGoogle Scholar
  104. Pelissier B., Thibaud J.B., Grignon C., Esquerre-Tugaye M.T. (1986) Cell surfaces in plant-microorganism interactions. VII. Elicitor preparations from two fungal pathogens depolarize plant membranes. Plant Sci 46: 103–109.CrossRefGoogle Scholar
  105. Pryor T. (1987) The origin and structure of fungal disease resistance genes in plants. Trends Genet 3: 157–161CrossRefGoogle Scholar
  106. Ricci P., Bonnet P., Huet J.-C., Sallantin M., Beauvais-Cante F., Bruneteau M., Billard V., Michel G., Pernollet J.-C. (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183: 555–563PubMedCrossRefGoogle Scholar
  107. Ride J.P., Barber M.S. (1987) The effects of various treatments on induced lignification and the resistance of wheat to fungi. Physiol Mol Plant Pathol 31: 349–360CrossRefGoogle Scholar
  108. Rogers K.R., Albert F., Anderson A.J. (1988) Lipid peroxidation is a consequence of elicitor activity. Plant Physiol. 86: 547–553PubMedCrossRefGoogle Scholar
  109. Ronald P.C., Staskawicz B.J. (1988) The avirulence gene aur BsJ from Xanthomonas campestris pv. vesicatoria encodes a 50 kDa protein. Mol Plant Microbe Interact 1: 191–198PubMedCrossRefGoogle Scholar
  110. Ryan C.A. (1988) Oligosaccharides as recognition signals for the expression of defensive genes in plants. Biochemistry 27: 8879–8883CrossRefGoogle Scholar
  111. Saito T., Meshi T., Takamatsu N., Okada Y. (1987) Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc Natl Acad Sci USA 84: 6074–6077PubMedCrossRefGoogle Scholar
  112. Saito T., Yamanaka K., Watanabe Y., Takamatsu N., Meshi T., Okada Y. (1989) Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N’ gene. Virology 173: 11–20PubMedCrossRefGoogle Scholar
  113. Schiifer W., Straney D., Ciuffetti L., VanEtten H.D., Yoder O.C. (1989) One enzyme makes a fungal pathogen, but not a saprophyte, virulent on a new host plant. Science 246: 247–249CrossRefGoogle Scholar
  114. Scheffer R.P., Livingston R.S. (1984) Host-selective toxins and their role in plant diseases. Science 223: 17–21PubMedCrossRefGoogle Scholar
  115. Schmelzer E., Kruger-Lebus S., Hahlbrock K. (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1: 993–1001PubMedGoogle Scholar
  116. Schmidt W.E., Ebel J. (1987) Specific binding of a fungal glucan phytoalexin elicitor to membrane fragments from soybean Glycine max. Proc Natl Acad Sci USA 84: 4117–4121PubMedCrossRefGoogle Scholar
  117. Schoelz J., Shepherd R.J., Daubert S. (1986) Region VI of cauliflower mosaic virus encodes a host range determinant. Mol Cell Biol 6: 2632–2637PubMedGoogle Scholar
  118. Schoelz J., Shepherd R.J., Daubert S.D. (1987) Host response to cauliflower mosaic virus (caMv) in solanaceous plants is determined by a 496 bp DNA sequence within gene VI. In: Arntzen C.J., Ryan C.A. (eds) Molecular strategies for crop protection. AR Liss, New York, pp 253–265Google Scholar
  119. Scholtens-Toma I.M.J, De Wit P.J..G.M. (1988) Purification and primary structure of a necrosis-inducing peptide from the apoplastic fluids oftomato infected with Cladosporium fulvum (syn. Fulvia fulva). Physiol Mol Plant Pathol 33: 59–67CrossRefGoogle Scholar
  120. Sharp J.K., McNeil M., Albersheim P. (1984) The primary structures of one elicitor-active and seven elicitor-inactive hex a (ß-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chern 259: 11321–11336Google Scholar
  121. Shepherd K.W., Mayo G.M.E. (1972) Genes conferring specific plant disease resistance. Science 175: 375–380PubMedCrossRefGoogle Scholar
  122. Shintaku M.H., Kluepfel D.A., Yacoub A., Patil S.S. (1989) Cloning and partial characterization of an avirulence determinant from race 1 of Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 35: 313–322CrossRefGoogle Scholar
  123. Sims J.E., Acres R.B., Grubin C.E., McMahan C.J., Wignall J.M., March C.J., Dower S.K. (1989) Cloning the interleukin I receptor from human T cells. Proc Natl Acad Sci USA 86: 8946–8950PubMedCrossRefGoogle Scholar
  124. Stab M.R., Ebel J. (1987) Effects of Ca2 + on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 257: 416–423PubMedCrossRefGoogle Scholar
  125. Staskawicz B.J., Dahlbeck D., Keen N.T. (1984) Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.). Merr Proc Natl Acad Sci USA 81: 6024–6028CrossRefGoogle Scholar
  126. Stermer B.A., Bostock R.M. (1987) Involvement of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol 84: 404–408PubMedCrossRefGoogle Scholar
  127. Stermer B.A., Bostock R.M. (1989) Rapid changes in protein synthesis after application of arachidonic acid to potato tuber tissue. Physiol Mol Plant Pathol 35: 347–356CrossRefGoogle Scholar
  128. Stone B.A. (1989) Cell walls in plant microbe associations. Aust J Plant Physiol 16: 5–17CrossRefGoogle Scholar
  129. Sutherland M.W., Deverall B.J, Moerschbacher B.M., Reisener H.-J. (1989) Wheat cultivar and chromosomal selectivity of two types of eliciting preparations from rust pathogens. Physiol Mol Plant Pat hol 35: 535–541CrossRefGoogle Scholar
  130. Swanson J., Kearney B., Dahlbeck D., Staskawicz B. (1988) Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Mol Plant Microbe Interact 1: 5–9CrossRefGoogle Scholar
  131. Takahashi H., Shimamoto K., Ehara Y. (1989) Cauliflower mosaic virus gene VI causes growth suppression, development of necrotic spots and expression of defence-related genes in transgenic tobacco plants. Mol Gen Genet 216: 188–194CrossRefGoogle Scholar
  132. Takamatsu N., Ishikawa M., Meshi T., Okada Y. (1987) Expression of bacterial chloramphenicolacetyl transferase gene in tobacco plants mediated by TMV-RNA. EMBO J 6: 307–311PubMedGoogle Scholar
  133. Tepper C.S., Anderson A.J. (1986) Two cultivars of bean display a differential response to extracellular components from Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 29: 411–420CrossRefGoogle Scholar
  134. Tepper C.S., Albert F.G., Anderson A.J. (1989) Differential mRNA accumulation in three cultivars of bean in response to elicitors from Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 34:85–9CrossRefGoogle Scholar
  135. Traylor E.A., Shore S.H., Ransom R.F., Dunkle L.D. (1987) Pathotoxin effects in sorghum are also produced by mercuric chloride treatment. Plant Physiol 84: 975–978PubMedCrossRefGoogle Scholar
  136. VanEtten H.D., Matthews D.E., Matthews P.S. (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27: 143–164PubMedCrossRefGoogle Scholar
  137. Vivian A., Atherton G.T., Bevan J.R., Crute J.R., Mur L.A.J. Taylor J.D. (1989) Isolation and characterization of cloned DNA conferring specific avirulence in Pseudomonas syringae pv. pisi to pea (Pisum satirum) cultivars, which possess the resistance allele, R2. Physiol Mol Plant Pathol 34: 335–344CrossRefGoogle Scholar
  138. Weltring K.-M., Turgeon B.G., Yoder O.C., VanEtten H.D. (1988) Isolation of a phytoalexindetoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans. Gene 68: 335–344PubMedCrossRefGoogle Scholar
  139. West C.A. (1981) Fungal elicitors of the phytoalexin response in higher plants. Naturwissenschaften 68: 447–457CrossRefGoogle Scholar
  140. Whalen M.C., Stall R.E. Staskawicz B.J. (1988) Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis o this resistance in bean. Proc Natl Acad Sci USA 85: 6743–6747PubMedCrossRefGoogle Scholar
  141. Williams A.F., Barclay A.N. (1988) The immunoglobulin superfamily-domains for cell surface recognition. Annu Rev Immunol 6: 381–405PubMedCrossRefGoogle Scholar
  142. Wittmann H.G., Wittmann-Liebold B. (1966) Protein chemical studies of two RNA viruses and their mutants. Cold Spring Harbor Symp Quant Biol 31: 163–172PubMedCrossRefGoogle Scholar
  143. Wolpert T.J. Macko V. (1989) Specific binding of victorin to a 100 kDa protein from oats. Proc Natl Acad Sci USA 86: 4092–4096PubMedCrossRefGoogle Scholar
  144. Wolpert T.J., Macko V., Acklin W., Juan B., Seibl J., Meili J., Arigoni D. (1985) Structure of victorin C. the major host-selective toxin from Cochliobolus victoriae. Experientia 41: 1524–1529CrossRefGoogle Scholar
  145. Wolpert T.J., Macko V., Acklin W., Arigoni D. (1988) Molecular features affecting the biological activity of the host-selective toxins from Cochliobolus victoriae. Plant Physiol 88: 37–41PubMedCrossRefGoogle Scholar
  146. Wong G.H., Elwell J.H., Oberley L.W., Goeddel D.V. (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58: 923–931PubMedCrossRefGoogle Scholar
  147. Yoshikawa M. (1978) Diverse modes of action of biotic and abiotic phytoalexin elicitors. Nature 275: 546–547CrossRefGoogle Scholar
  148. Yoshikawa M. (1988) Molecular mechanisms for induction of host defense in fungal diseases. In: Molecular strategies for pathogenicity and host defense in viral, bacterial and fungal diseases. Abstracts of satellite meeting of the 5th International Congress of Plant Pathology, Kyoto. Japan. pp 3–7Google Scholar
  149. Yoshikawa M. Matama M. Masago H. (1981) Release of a soluble phytoalexin elicitor from mycelial walls of Phylophli1ora meyasperma var. sojae by soybean tissues. Plant Physiol 67:1032–1035PubMedCrossRefGoogle Scholar
  150. Yoshikawa M. Keen N.T., Wang M.-C. (1983) A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol 73: 497 506PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Noel T. Keen
    • 1
  • William O. Dawson
    • 1
  1. 1.Department of Plant PathologyUniversity of California RiversideRiversideUSA

Personalised recommendations