An Analysis of Host Range Specificity Genes of Rhizobium as a Model System for Virulence Genes in Phytobacteria

  • Michael A. Djordjevic
  • Barry G. Rolfe
  • Wendy Lewis-Henderson
Part of the Plant Gene Research book series (GENE)


Microbes have long exploited plants as favourable niches for colonisation. The surfaces and intercellular spaces of leaves, vascular tissue (phloem and xylem), and the ecto- and endorhizospheres (root surface and intercellular spaces between root cortical cells, respectively) are colonised by microbes to varying extents (Agrios, 1988). About 80 species of bacteria are known to interact with plants either beneficially or detrimentally. The consequence of colonisation or penetration of the plant tissue varies from asymptomatic, to disease, to symbiosis and is influenced greatly by the environment. Products of photosynthesis, such as organic acids and sucrose, can provide energy sources for microbial growth. The roots are not only surrounded by a plethora of soil microbes but up to 40% of fixed carbon can be exported from root cells as organic chemicals or as cellular debris sloughed from the root cap (Lynch and Whipps, 1989). The soil, by comparison, offers a relatively nutrient-poor environment (Suslow, 1982). The cellular energy reserves of microbes bound to soil particles will influence the rapidity of their responsiveness to changes in their environment, for example, the passing of a growing root in their vicinity.


Root Hair Rhizobium Leguminosarum Subterranean Clover Infection Thread Root Hair Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrios G.N. (1988) Plant pathology, 3rd edn. Academic Press, San DiegoGoogle Scholar
  2. Al-Mousawai A.H., Richardson P.E., Essenberg M., Johnson W.M. (1982) Ultrastructural studies of a compatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Phytopathology 72: 1222–1230Google Scholar
  3. Baker M.E. (1989a) A common ancestor for human placental 17ß-hydroxysteroid dehydrogenase, Streptomyces coelicolor actIII protein, and Drosophila melanogaster alcohol dehydrogenase. Fed Am Soc Exp Biol J 4:222–226Google Scholar
  4. Baker M.E. (1989b) Human placental 17ß-hydroxysteroid dehydrogenase is homologous to NodG protein of Rhizobium meliloti. Mol Endocrinol 3: 881–884PubMedGoogle Scholar
  5. Banfalvi Z., Kondorosi A. (1989) Production of root hair deformation factors by Rhizobium meliloti nodulation genes in Escherichia coli: HsnD (NodH) is involved in the plant hostspecific modification of the Nod ABC factor. Plant Mol Biol 13: 1–12PubMedGoogle Scholar
  6. Banfalvi Z., Sakanyan V,, Koncz C., Kiss A., Dusha I., Kondrosi A. (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol Gen Genet 184: 318–325PubMedGoogle Scholar
  7. Banfalvi Z., Nieuwkoop A., Schell M., Besl L., Stacey G. (l988a) Regulation of nod gene expression in Bradyrhizohium japonicum. Mol Gen Genet 214: 420–424Google Scholar
  8. Banfalvi Z., Schell M., Desmane N., Nieuwkoop A., Kondorosi A., Stacey G. (l988b) A Bradyrhizohium japonicum gene which directs nodulation of siratro and selected soybean cultivars. In: Bothe H., de Bruijn F.J., Newton W.E. (eds) Nitrogen fixation: hundred years after. G Fischer. Stuttgart, p 482Google Scholar
  9. Bauer W.D., Bhuvaneswari T.V. Calvert H.E., Law I.J., Malik N.S.A., Vesper S.J. (1985) Recognition and infection by slow-growing rhizobia. In: Evans H.J., Bottomley P.J., Newton W.E. (eds) Nitrogen fixation research progress. Proceedings of the 6th International Symposium on Nitrogen Fixation. Martinus Nijhoff, Dordrecht, pp 247–253Google Scholar
  10. Bhuvaneswari T.V. Turgeon G.B. Bauer D.W. (1980) Early events in the infection of soybean (Glycine max L. Merr). Plant Physiol 66: 1027–1031PubMedGoogle Scholar
  11. Bibb M.J., Biro S., Motamedi H. Collins J.F., Hutchinson C.R. (1989) Analysis of the nucleotide sequence of the Streptomyces glauceseens tcml genes provides key information about the enzymology of polyketide antibiotic synthesis. EMBO J 8: 2727–2736PubMedGoogle Scholar
  12. Billing E. (1987) Bacteria as plant pathogens. Van Nostrand Reinhold, Wokingham (Cole J.A., Knowels C.J., Schlessinger D. (eds) Aspects of microbiology, vol 14)Google Scholar
  13. Burn J.E., Hamilton W.D., Wootton J.C., Johnston AWB. (1989) Single and multiple mutations affecting properties of the regulatory gene nod D of Rhizobium. Mol Microbiol 3: 1567–1577PubMedGoogle Scholar
  14. Caetano-Anolles G., Crist-Estes D.K., Bauer W.D. (1988) Chemotaxis ofRhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170: 3164–3169PubMedGoogle Scholar
  15. Callaham D.A., Torrey J.G. (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59: 1647–1664Google Scholar
  16. Calvert H.E., Pence M.K., Pierce M., Malik N.S.A., Bauer W.D. (1984) Anatomical analysis of the development and distribution of Rhizobium infections' in soybean roots. Can J Bot62: 2375–2384Google Scholar
  17. Canter-Cremers H.C.J., Spaink H.P., Wijfjes A.H.M., Pees E., Wijffelman C.A., Okker R.J.H., Lugtenberg B.J.J. (1989) Additional nodulation genes on the Sym plasmid of Rhizobium leguminosarum biovar viciae. Plant Mol Biol 13: 163–174PubMedGoogle Scholar
  18. Carroll B.J., McNeil D.L., Gresshoff P.M. (1985) Isolation and properties of soybean mutants which nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA 82: 4162–4166PubMedGoogle Scholar
  19. Chen H., Bately M., Redmond J.W., Rolfe B.G. (1985) Alteration of the effective nodulation properties of a fast-growing broad host range Rhizobium due to changes in exopolysaccharide synthesis. J Plant Physiol 120: 331–349Google Scholar
  20. Collinge D.B., Slusarenko A.J. (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9: 389–410Google Scholar
  21. Collmer A., Berman P., Mount M.S. (1982) Pectate lyase regulation and bacterial soft-rot pathogenesis. In:Mount M.S., Lacy E.H. (eds) Phytopathogenic prokaryotes, vol 1. Academic Press, New York, pp 396–422Google Scholar
  22. Daniels M.J., Dow M. (1989) Regulation of gene expression in Xanthomonas-Brassica interaction. In: Molecular biology of bacterial plant pathogens, Fallen Leaf Lake, South Lake Tahoe, California, 37Google Scholar
  23. Daniels M.J., Dow J.M., Osbourn A.E. (1988) Molecular genetics of pathogenicity in phytopathogenic bacteria. Annu Rev Phytopathol 26: 285–312Google Scholar
  24. Dart P.J. (1974) The infection process. In:Quispal A. (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 381–429Google Scholar
  25. Davis E.O., Evans J.J., Johnston A.W.B. (1988) Identification of nodX, a gene that allows Rhizobium leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol Gen Genet 212: 531–535PubMedGoogle Scholar
  26. Dazzo F.B., Truchet G. (1983) Interactions of lectins and their saccharide receptors in the Rhizobium legume symbiosis. J Membrane Biol 73: 1–16Google Scholar
  27. De Maagd R.A., Wijfjes A.H.M., Spaink H.P., Ruiz-Sainz J.E., Wijffelman C.A., Okker R.I.H., Lugtenberg B.J.J. (1989) Nod O, a new nod gene of the Rhizobium leguminosarum biovar viciae Sym plasmid pRL1JI, encodes a secreted protein. J Bacteriol 171: 6764–6770PubMedGoogle Scholar
  28. Debelle F., Sharma S.R. (1986) Nucleotide sequence of Rhizobium meliloti PCR 2011 genes involved in host specificity of nodulation. Nucleic Acids Res 14: 7453–7472PubMedGoogle Scholar
  29. Debelle F., Rosenberg C. Vasse J., Maillet F., Martinez E., Denarie J., Truchet G. (1986) Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti. J Bacteriol 168: 1075–1086PubMedGoogle Scholar
  30. Debelle F., Maillet F., Vasse J., Rosenberg C., De Billy F., Truchet G., Denarie J., Ausubel F.M. (1988) Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: genetic basis of R. meliloti dominance. J Bacteriol 170: 5718–5727PubMedGoogle Scholar
  31. Delves A.C., Mathews A., Day D.A., Carter A.S., Carroll B.J., Gresshoff P.M. (1986) Regulation of the soybean and Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82: 588–590PubMedGoogle Scholar
  32. De Wit P.J.G.M. (1992) Functional models to explain gene-for-gene relationships in plant-pathogen interactions. In: Boller T., Meins F. (eds) Genes involved in plant defense.Springer, Wien New York, pp 25–47 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  33. Diaz C.L., Melchers L.S., Hooykaas P.J.J., Lugtenberg B.J.J., Kijne J.W. (1989) Root lectin as a determinant of host-plant specificty in the Rhizobium-legume symbiosis. Nature 338: 579–581Google Scholar
  34. Dickinson C.H., Lucas J.A. (1982) Plant pathology and plant pathogens, 2nd edn. Blackwell, OxfordGoogle Scholar
  35. Dixon R.A. (1986) The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61: 239–291Google Scholar
  36. Djordjevic M.A., Zurkowski W., Rolfe B.G. (1982) Plasmids and stability of symbiotic properties of Rhizobium trifolii. J Bacteriol 151: 560–568PubMedGoogle Scholar
  37. Djordjevic M.A., Schofield P.R., Ridge R.W., Morrison N.A., Bassam B.J., Plazinski J., Watson J.M., Rolfe B.G. (1985a) Rhizobium nodulation genes involved in root hair curling (Hac) are functionally conserved. Plant Mol Biol 4: 147–160Google Scholar
  38. Djordjevic M.A., Schofield P.R., Rolfe B.G. (l985b) Tn5 mutagenesis of Rhizobium trifolii hostspecific nodulation genes result in mutants with altered host range ability. Mol Gen Genet 200: 463–471Google Scholar
  39. Djordjevic M.A., Innes R.W., Wijffelman C.A., Schofield P.R., Rolfe B.G. (1986) Nodulation of specific legumes is controlled by several loci in Rhizobium trifolii. Plant Mol Biol 6: 389–403Google Scholar
  40. Djordjevic M.A., Gabriel D.W., Rolfe B.G. (1987a) Rhizobium: the refined parasite of legumes. Annu Rev Phytopathol 25: 145–168Google Scholar
  41. Djordjevic M.A., Redmond J.W., Batley M., Rolfe B.G. (1987b) Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J 6: 1173–1179PubMedGoogle Scholar
  42. Djordjevic S.P., Ridge R.W., Chen H., Redmond J.W., Bately M., Rolfe B.G. (1988) Induction of pathogenic-like responses in the legume Macroptilium atropurpureum by a transposoninduced mutant of the fast-growing, broad-host-range Rhizobium strain NGR234.J Bacteriol 170: 1848–1857PubMedGoogle Scholar
  43. Downie J.A. (1989) The nodL gene from Rhizobium leguminosarum is homologous to the acetyl transferases encoded by lac A and cys E. Mol Microbiol 3: 1649–1651PubMedGoogle Scholar
  44. Downie J.A., Johnston A.W.B. (1986) Nodulation of legumes by Rhizobium: the recognised root? Cell 47: 153–154PubMedGoogle Scholar
  45. Downie J.A., Hombrecher G, Ma Q.S., Knight C.D., Wells B., Johnston A.W.B. (1983) Cloned nodulation genes of Rhizobium leguminosarum determine host-range specificity.Mol Gen Genet 190 359–365Google Scholar
  46. Dudley M.E., Jacobs T.W., Long S.R. (1987) Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti. Planta 171: 289–301Google Scholar
  47. Dusha I., Bakos A., Kondorosi A., De Bruijn F.J., Schell J. (1989) The Rhizobium meliloti early nodulation genes (nod ABC) are nitrogen-regulated: isolation of a mutant strain with efficient nodulation capacity on alfalfa in the presence of ammonium. Mol Gen Genet 219:89–97Google Scholar
  48. Economou A., Hamilton W.D.O., Johnston A.W.B., Downie J.A. (1990) The Rhizobium nodulation gene nod 0 encodes a Ca2+-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins. EMBO J 9: 349–354PubMedGoogle Scholar
  49. Egelhoff T.T., Long S.R. (1985) Rhizobium meliloti nodulation genes: identification of nod DABe gene products, purification of nod A protein, and expression of nod A in Rhizobium meliloti. J Bacteriol 164: 591–599PubMedGoogle Scholar
  50. Evans I.J., Downie J.A. (1986) The nod I product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins; nucleotide sequence analysis of the nod I and nod J genes. Gene 43: 95–101PubMedGoogle Scholar
  51. Faucher F., Maillet F., Vasse J., Rosenberg C., van Brussel A.A.N., Truchet G., Denarie J. (1988) Rhizobium meliloti host range nod H gene determines production of an alfalfa-specific extracellular signal. J Bacteriol 170: 5489–5499PubMedGoogle Scholar
  52. Faucher C., Camut S., Denarie J., Truchet G. (1989) The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosarum bv. viciae and determine changes in the production of plant-specific extracellular signals. Mol Plant Microbe Interact 2: 291–300Google Scholar
  53. Firmin J.L., Wilson K.E., Rossen L., Johnston A.W.B. (1986) Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324: 90–92Google Scholar
  54. Fisher R.F., Tu J.K., Long S.R. (1985) Conserved nodulation genes in Rhizobium meliloti and Rhizobium trifolii. Appl Environ Microbiol49: 1432–1435PubMedGoogle Scholar
  55. Fisher R.F., Swanson J.A., Mulligan J.T., Long S.R. (1987) Extended region of nodulation genes in Rhizobium meliloti 1021. II. Nucleotide sequence, transcription sites and protein products. Genetics 117: 191–201PubMedGoogle Scholar
  56. Fisher R.F., Egelhoff T.T., Mulligan J.T., Long S.R. (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev 2: 282–293PubMedGoogle Scholar
  57. Flor H.H. (1947) Inheritance of reaction to rust in flax. J Agricult Res 74: 241–262Google Scholar
  58. Flor H.H. (1955) Host-parasite interaction in flax rust—its genetics and other implications. Phytopathology 45:680–685Google Scholar
  59. Franssen H.J., Nap J.-P, Gloudemans T., Stiekema W., van Dam H., Govers F., Louwerse J., van Kammen A., Bisseling T. (1987) Characterization of cDNA for nodulin-75 of soybean: a gene product involved in early stages of root nodule development. Proc Natl Acad Sci USA 84: 4495–4499PubMedGoogle Scholar
  60. Fraser R.S.S. (1985) Some basic concepts and definitions in resistance studies. In: Fraser R.S.S. (ed) Mechanisms of resistance to plant disease. Martinus Nijhoff, Dordrecht, pp 1–12Google Scholar
  61. Gabriel D.W. (1986) Specificity and gene function in plant-pathogen interactions. Am Soc Microbiol News 52: 19–25Google Scholar
  62. Gabriel D.W. (1989) The genetics of plant pathogen population structure and host-parasite specificity. In: Kosuge T., Nester E.W. (eds) Plant-microbe interactions: molecular and genetic perspectives, vol 3. Macmillan, New York, pp 343–379Google Scholar
  63. Gerhold D.L., Dazzo F.B., Gresshoff P.M. (1985) Selective removal of seedling root hairs for studies of the Rhizobium-legume symbiosis. J Microbiol Methods 4: 95–102Google Scholar
  64. Gloudemans T, Bhuvaneswari T.V., Moerman M., Van Brussel T., Van Kammen A., Bisseling T. (1989) Involvement of Rhizobium leguminosarum nodulation genes in gene expression in plant root hairs. Plant Mol BioI 12: 157–167Google Scholar
  65. Gottfert M., Grob P., Hennecke H. (1990) Proposed regulatory pathways encoded by the nod V and nod W genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci USA 87: 2680–2684PubMedGoogle Scholar
  66. Gottfert M., Grob P., Rossbach S., Fischer H.-M., Thony B., Anthamatten D., Kullik I., Henecke H. (1989) Bacterial genes involved in the communication between soybean and its root nodule symbiont, Bradyrhizobiumjaponicum. In: Lugtenberg B.J.J. (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York Tokyo, pp 295–301 (NATO ASI Series, series H, vol 36)Google Scholar
  67. Grimm C., Panopoulus N.J. (1989) The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolico/a is homologous to a highly conserved domain of several procaryotic regulatory proteins. J Bacteriol 171: 5031–5038PubMedGoogle Scholar
  68. Gussin G.N., Ronson C.W., Ausubel F.M. (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20: 567–591PubMedGoogle Scholar
  69. Gyorgypal Z., Iyer N., Kondorosi A. (1988) Three regulatory nod D alleles of diverged flavonoid-specificity are involved in host-dependent nodulation by Rhizobium meliloti. Mol Gen Genet 212: 85–92Google Scholar
  70. Hagiya M., Close T.J., Tait R.T., Kado C.I. (1985) Identification of pTiC58 plasmid-encoded proteins for virulence in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 82: 2669–2673PubMedGoogle Scholar
  71. Halverson L.J., Stacey G. (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50: 193–225PubMedGoogle Scholar
  72. Heron D.S., Ersek T., Krishnan H.B. Peuppke S.G. (1989) Nodulation mutants of Rhizobium fredii USDA257. Mol Plant Microbe Interact 2: 4–10Google Scholar
  73. Hirsch A.M., Bhuvaneswari T.V., Torrey J.G., Bisseling T. (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86: 1244–1248PubMedGoogle Scholar
  74. Hoekema A, de Pater B.S., Fellinger A.J., Hooykaas P.J.J., Schilperoort R.A. (1984) The limited host range of an Agrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range T-region. EMBO J 3: 3043–3047PubMedGoogle Scholar
  75. Holl F.B. (1975) Host plant control of the inheritance of dinitrogen fixation in thePisum-Rhizobium symbiosis.Euphytica 24: 767–770Google Scholar
  76. Hombrecher G., Gotz R., Dibb N.J., Downie J.A., Johnston A.W.B., Brewin J. (1984) Cloning and mutagenesis of nodulation genes from Rhizobium leguminosarum TOM, a strain with extended host range. Mol Gen Genet 194: 293–298Google Scholar
  77. Hong G.-F., Burn J.E., Johnston A.W.B. (1987) Evidence that DNA involved in the expression of nodulation (nod) genes in Rhizobium binds to the product of the regulatory gene nodD. Nucleic Acids Res15: 9677–9690PubMedGoogle Scholar
  78. Honma M.A., Ausubel F.M. (1987) Rhizobium meliloti has three functional copies of the nod D symbiotic regulatory gene. Proc Natl Acad Sci USA 84: 8558–8562PubMedGoogle Scholar
  79. Hooykaas P.J.J., Schilperoort R.A. (1986) The molecular basis of the Agrobacterium-plant interaction. In: Lugtenberg B. (ed) Recognition in microbe-plant symbiotic and pathogenic interactions. Springer. Berlin Heidelberg New York, pp 189–202 (NATO ASI Series, series H, vol 4)Google Scholar
  80. Horvath B., Kondorosi E., John M., Schmidt J., Torok I., Gyorgypal Z., Barabas I., Wieneke U., Schell J., Kondorosi A. (1986) Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell 46: 335–343PubMedGoogle Scholar
  81. Horvath B., Bachem C.W.B., Schell J., Kondorosi A. (1987) Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nod D gene product. EMBO J 6: 841–848PubMedGoogle Scholar
  82. Huang S.Z., Djordjevic M.A., Rolfe B.G. (1988) Characterisation of aberrant infection events induced on Trij()/ium subterraneum by Rhizobium trifolii region II mutants. J Plant Physiol 133: 16–24Google Scholar
  83. Huang Y., Morel P., Powell B., Kado C.I. (1990) Vir A, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172:1142–1144PubMedGoogle Scholar
  84. Innes R.W., Kuempel P.L., Plazinski J., Canter-Cremers H., Rolfe B.G., Djordjevic M.A. (1985) Plant factors induce expression of nodulation and host range genes in Rhizobium trifolii. Mol Gen Genet 201: 426–432Google Scholar
  85. Jin S., Roitsch T., Ankenbauer R.G., Gordon M.P., Nester E.W. (1990a) The Vir A protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172: 525–530PubMedGoogle Scholar
  86. Jin S., Roitsch T., Christie P.J.. Nester E.W. (1990b) The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172: 531–537PubMedGoogle Scholar
  87. Johnson H.W., Means U.M., Clark F.E. (1959) Responses of seedlings to extracts of soybean nodules bearing selected strains of Rhizohium japonicum. Nature 183: 308–309Google Scholar
  88. Johnston A.W.B., Beynon J.L.. Buchanan-Wollaston A.V., Setchell S.M., Hirsch P.R., Beringer J.E. (1978) High frequency transfer of nodulation ability between strains and species of Rhizobium. Nature 276: 634–636Google Scholar
  89. Johnston A.W.B., Burn J.E.. Economou A. Davis E.O., Hawkins F.K.L., Bibb M.J. (1988) Genetic factors affecting host-range in Rhizobium leguminosarum. In: Palacios R., Verma D.P.S. (eds) Molecular genetics of plant-microbe interactions. American Phytopathological Society, St. Paul, MN, pp 378–384Google Scholar
  90. Kamoun S., Kado C.I. (1989) A plant inducible pathogenicity (pth) gene of X. campestris pv. campestris encodes an exocellular components required for growth in the host. In: Molecular biology of bacterial plant pathogens, Fallen Leaf Lake, South Lake Tahoe, California, 37Google Scholar
  91. Kearney B., Staskawicz B.J. (1989) Analysis of avrBs2 in Xanthomonas campestris pathovars: conservation and possible mechanism of stable disease resistance. In: Molecular biology of bacterial plant pathogens, Fallen Leaf Lake, South Lake Tahoe, California, 39Google Scholar
  92. Keen N.T. (1986) Pathogenic strategies of fungi. In: Lugtenberg B.J.J. (ed) Recognition in microbe-plant symbiotic and pathogenic interactions. Springer, Berlin Heidelberg New York Tokyo, pp 171–188 (NATO ASI) Series, series H, vol 4)Google Scholar
  93. Keen N.T., Dawson W.O. (1992) Pathogen avirulence genes and elicitors of plant defense. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer, Wien New York, pp 85–114 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  94. Keen N.T. Staskawicz B. (1988) Host range determinants in plant pathogens and symbionts. Annu Rev Microbiol 42:421–440Google Scholar
  95. Keen N.T., Tamaki S., Kobayashi D., Gerhold D., Stayton M., Shen H., Gold S., Lorang J., Thordal-Christensen H., Dahlbeck D. Staskawicz B. (1990) Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction.Mol Plant Microbe Interact 3: 112–121Google Scholar
  96. Kerr A. (1987) The impact of molecular genetics on plant pathology. Annu Rev Phytopathol 25: 87–110Google Scholar
  97. Kingsley M.T., Gabriel D.W. (1989) Tn5-induced mutations in a wide host range xanthomonad affecting general and host-specific virulence. In: Molecular biology of bacterial plant pathogens, Fallen Leaf Lake, South Lake Tahoe, California, 32Google Scholar
  98. Klement Z., Goodman R.N. (1967) The hypersensitive response to infection by bacterial pathogens. Annu Rev Phytopathol 5: 17–44Google Scholar
  99. Kobayashi D.Y., Keen N.T. (1985) Cloning of a factor from Pseudomonas syringae pv. tomato responsible for a hypersensitive response on soybean. Phytopathology 75: 1355Google Scholar
  100. Kobayashi D.Y., Tamaki S.J., Keen N.T. (1990) Molecular characterisation of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 3: 94–102PubMedGoogle Scholar
  101. Kondorosi A (1989) Rhizohium-legume interactions: nodulation genes. In:Kosuge T., Nester E.W. (eds) Plant-microbe interactions: molecular and genetic perspectives, vol 3. McGraw-Hill, New York pp 383–420Google Scholar
  102. Kondorosi E., Gyuris J., Schmidt J., John M., Duda E., Hoffman B., Schell J., Kondorosi A. (1989) Positive and negative control of nod expression in Rhizobium meliloti is required for optimal nodulation. EMBO J 8: 1331–1340PubMedGoogle Scholar
  103. Kumer Rao JVDK, Dart P.J., Usha Kiran M. (1984) Rhizobium-induced leaf roll in pigeonpea (Cajanus cajan L. Millsp.). Soil Biochem 16: 89–91Google Scholar
  104. Lamb C.J., Lawton M.A., Dron M., Dixon R.A. (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224PubMedGoogle Scholar
  105. Leroux B., Yanofsky M.F., Winans S.C., Ward J.E., Zeigler S.F., Nester E.W. (1987) Characterization of the vir A locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 4:849–856Google Scholar
  106. Libbenga K.R., Bogers R.J. (1974) Root-nodule morphogenesis. In: Quispel A. (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 430–472Google Scholar
  107. Lie T.A. (1984) Host genes in Pisum sativum L. conferring resistance to European Rhizobium leguminosarum strains. Plant Soil 82: 415–425Google Scholar
  108. Long S.R. (1984) Genetics of Rhizobium nodulation. In: Kosuge T., Nester E.W. (eds) Plant-microbe interactions. Macmillan, New York, pp 265–306Google Scholar
  109. Long S.R. (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56: 203–214PubMedGoogle Scholar
  110. Long S.R., Cooper J. (1988) Overview of symbiosis. In: Verma D.P.S., Palacios R. (eds) Molecular genetics of molecular plant-microbe interactions. American Phytopathological Society, St. Paul, M N, pp 163–178Google Scholar
  111. Lynch J.M., Whipps J.M. (1989) Substrate flow in the rhizosphere. In: The rhizosphere and plant growth, Beltsville Symposium XIV, Beltsville, Maryland, 20Google Scholar
  112. Mass J.L., Finney M.M., Civerolo E.L., Sasser M. (1985) Association of an unusual strain of Xanthomonas campestris with apple. Phytopathology 75: 438–445Google Scholar
  113. Martin J.F., Demain A.L. (1980) Control of antibiotic biosynthesis. Microbial Rev 44: 230–251Google Scholar
  114. Martinez E., Romero D., Palacios R. (1990) The Rhizobium genome. Crit Rev Plant Sci 9: 59–93Google Scholar
  115. McIver J., Djordjevic M.A., Weinman J.J., Bender G.L., Rolfe B.G. (1989) Extension of host range in Rhizobium leguminosarum bv. trifolii caused by point mutations in nod D that result in alterations in regulatory function and recognition of inducer molecules. Mol Plant Microbe Interact 2: 97–106PubMedGoogle Scholar
  116. Morris R.O. (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37: 509Google Scholar
  117. Morrison N.A., Bisseling T., Verma D.P.S. (1988) Development and differentiation of the root nodule. In:Browder L.W. (ed) Developmental biology, vol 5. Plenum, New York, pp 405–425Google Scholar
  118. Mulligan J.T., Long S.R. (1985) Induction of Rhizobium meliloti nod C expression by plant exudate requires nod D. Proc Natl Acad Sci USA 82: 6609–6613PubMedGoogle Scholar
  119. Murphy P.J., Heycke N., Banfalfi Z., Tate M.E., De Bruijn F., Kondorosi A., Tempe J., Schell J. (1987) Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked on the Sym plasmid. Proc Natl Acad Sci USA 84: 493–497PubMedGoogle Scholar
  120. Murphy P.J., Heycke N., Trenz S.P., Ratet P., De Bruijn F.J., Schell J. (1988) Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbiotically regulated. Proc Natl Acad Sci USA 85: 9133–9137PubMedGoogle Scholar
  121. Nixon B.T., Ronson C.W., Ausubel F.M. (1986) Two component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntr B and ntr C. Proc Natl Acad Sci USA 83: 7850–7854PubMedGoogle Scholar
  122. Owens L.D., Wright D.A. (1965) Rhizobial-induced chlorosis in soybeans: isolation, production in nodules and varietal specificity of the toxin. Plant Physiol 40: 927–930PubMedGoogle Scholar
  123. Panopoulos N.J., Peet R.C. (1985) The molecular genetics of plant pathogenic bacteria and their plasmids. Annu Rev Phytopathol23: 381–419Google Scholar
  124. Peters N.K., Long S.R. (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88: 396–400PubMedGoogle Scholar
  125. Peters N.K., Verma D.P.S. (1990) Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol Plant Microbe Interact 3: 4–8PubMedGoogle Scholar
  126. Peters N.K., Frost J.W., Long S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:917–1008Google Scholar
  127. Philip-Hollingsworth S., Hollingsworth R.I., Dazzo F.B., Djordjevic M.A., Rolfe B.G. (1989) Effects of interspecies transfer of Rhizobium host specific nodulation genes on acidic polysaccharide structure and lectin recognition processes. J Biol Chern 264: 5710–5714Google Scholar
  128. Pryor T. (1987) The origin and structure of fungal disease resistance genes in plants. Trends Biol Sci 3: 157–161Google Scholar
  129. Rahme L.G., Mindrinos M.N., Panopoulos N.J. (1989) Physiological and genetic control of hrp ABCD gene expression in Pseudomonas syringae pv. phaseolicola. In: Molecular biology of bacterial plant pathogens, Fallen Leaf Lake, South Lake Tahoe, California, 22Google Scholar
  130. Redmond J.R., Batley M., Djordjevic M.A., Innes R.W., Keumpel P.L., Rolfe B.G. (1986) Flavones induce expression of nod genes in Rhizobium. Nature 323: 632–635Google Scholar
  131. Ridge R.W., Rolfe B.G. (1985) Rhizobium sp. degradation of legume root hair cell wall at the site of infection thread origin. Appl Environ Microbiol 50: 717–720PubMedGoogle Scholar
  132. Ridge R.W., Rolfe B.G. (1986) Sequence of events during the infection of the tropical legume Macroptilium atropurpureum Urb. by the broad-host-range, fast-growing Rhizobium ANU240. J Plant Physiol 122: 121–137Google Scholar
  133. Roberts I.N., Dow J.M., Lum K.Y., Scofield G., Barber C.E., Daniels M.J. (1987) Antiserum against Xanthomonas phytopathogen inhibits host-pathogen interaction in seedlings of Brassica campestris. FEMS Microbiol Lett 44: 383–387Google Scholar
  134. Rolfe B.G. (1988) Flavones and isoflavones as inducing substances of legume nodulation. Biofactors 1: 3–10PubMedGoogle Scholar
  135. Rolfe B.G., Gresshoff P.M. (1988) Genetic analysis of legume nodule initiation. Annu Rev Plant Physiol Plant Mol Biol 39: 297–319Google Scholar
  136. Rolfe B.G., Gresshoff P.M., Shine J., Vincent J.M. (1980) Interaction between a non-nodulating and an ineffective mutant of Rhizobium trifolii resulting in effective (nitrogen-fixing) nodulation. Appl Environ Microbiol 39: 449–452PubMedGoogle Scholar
  137. Rolfe B.G., Batley M., Redmond J.W., Richardson A.E., Simpson R.J., Bassam B.G., Sargent C.L., Weinman J.J., Djordjevic M.A., Dazzo F.B. (1988) Phenolic compounds secreted by legumes. In: Bothe H., Bruijn F.J., Newton W.E. (eds) Nitrogen fixation: hundred years after. Proceedings of the 7th International Congress on Nitrogen Fixation. G Fischer, Stuttgart, pp 405–409Google Scholar
  138. Rolfe B.G., Weinman J.J., Djordjevic M.A. (1989) Host-specificity in Rhizobium. In: Kosuge T., Nester E.W. (eds) Plant-microbe interactions: molecular and genetic perspectives, vol 3. McGraw-Hill, New York, pp 421–456Google Scholar
  139. Rossen L., Johnston A.W.B., Downie J.A. (1984) DNA sequence of the Rhizobium leguminosarum nodulation genes nod AB and C required for root hair curling. Nucleic Acids Res 12: 9497–9508PubMedGoogle Scholar
  140. Ryan C.A. (1988) Oligosaccharides as recognition signals for the expression of defensive genes in plants. Biochemistry 27: 8879–8883Google Scholar
  141. Sargent L., Huang S.Z., Rolfe B.G., Djordjevic M.A. (1987) Split root assays using Trifolium subterraneum show that Rhizobium infection induces a systemic response that can inhibit nodulation of another invasive Rhizobium strain.Appl Environ Microbiol 53: 1611–1619PubMedGoogle Scholar
  142. Scheres B, Van De Wiel C., Zalensky A., Horvath B., Spaink H., Van Eck H., Zwartkruis F., Wolters A.-M., Gloudemans T., Van Kammen A., Bisseling T. (1990) The ENODI2 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60: 284–291Google Scholar
  143. Schlaman H.R.M., Spaink H.P., Okker R.J.H., Lugtenberg B.J.J. (1989) Subcellular localisation of the nod D gene product in Rhizobium leguminosarum. J Bacteriol 171: 4686–4693PubMedGoogle Scholar
  144. Schmidt J., John M., Weineke U., Krussmann H.-D., Schell J. (1986) Expression of the nodulation gene nod A in Rhizobium meliloti and the localisation of the gene product in the cytosol. Proc Natl Acad Sci USA 83: 9581–9585PubMedGoogle Scholar
  145. Schofield P.R., Djordjevic M.A., Rolfe B.G., Shine J., Watson J.M. (1983) A molecular linkage map of nitrogenase and nodulation genes in Rhizobium trifolii.Mol Gen Genet 192: 459–465Google Scholar
  146. Schofield P.R., Ridge R.W., Rolfe B.G., Shine J., Watson J.M. (1984) Host-specific nodulation is encoded on a 14 kb DNA fragment in Rhizobium trifolii. Plant Mol BioI 3:3–11Google Scholar
  147. Schwedock J, Long S.R. (1989) Nucleotide sequence and protein products of two new nodulation genes of Rhizobium meliloti, nod P and nod Q. Mol Plant Microbe Interact 2: 184–194Google Scholar
  148. Sequeira F. (1983) Mechanisms of induced resistance in plants.Annu Rev Microbiol37: 51–79PubMedGoogle Scholar
  149. Shearman C.A., Rossen L., Johnston A.W.B., Downie J.A. (1986) The Rhizobium leguminosarum nodulation gene nod F encodes a polypeptide similar to acyl-carrier protein and is regulated by nod D and a factor in pea root exudate. EMBO J 5: 647–652PubMedGoogle Scholar
  150. Spaink H.P., Okker R.J.H., Wijffelman C.A., Pees E., Lugtenberg B.J.J. (1987a) Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL 11I. Plant Mol BioI 9:27–39Google Scholar
  151. Spaink H.P., Wijffelman C.A., Pees E., Okker P.J.H., Lugtenberg B.J.J. (1987b) Rhizobium nodulation gene nod D as a determinant of host specificity. Nature 328: 337–340Google Scholar
  152. Spaink H.P., Okker R.J.H., Wijffelman C.A., Tak T., Goosen-De Roo L., Pees E., Van Brussel A.A.N., Lugtenberg B.J.J. (1989a) Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nod D product. J Bacteriol 171: 4045–4053PubMedGoogle Scholar
  153. Spaink H.P., Weinman J.J., Djordjevic M.A., Wijffelman C.A., Okker R.J.H., Lugtenberg B.J.J. (1989b) Genetic analysis and cellular localization of the Rhizobium host specificity-determining Nod E protein. EMBO J 8:2811–2818PubMedGoogle Scholar
  154. Spaink H.P., Wijffelman C.A., Okker R.J.H., Lugtenberg B.J.J (1989c) Localisation of functional regions of the Rhizohium nod D product using hybrid nod D genes. Plant Mol BioI 12: 59–73Google Scholar
  155. Stachel S.E., Messens E., Van Montague M., Zambryski P. (1985) Identification of signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629Google Scholar
  156. Surin B.P., Downie J.A. (1988) Characterisation of the Rhizobium leguminosarum genes nod LM N involved in efficient host specific nodulation. Mol Microbiol 2: 173–183PubMedGoogle Scholar
  157. Surin B.P., Downie J.A. (1989) Rhizobium leguminosarum genes required for expression and transfer of host specific nodulation. Plant Mol BioI 12: 19–29Google Scholar
  158. Suslow T.V. (1982) Role of root-colonizing bacteria in plant growth. In:Mount M.S., Lacy G.H. (eds) Phytopathogenic prokaryotes, vol 2. Academic Press, New York, pp 187–224Google Scholar
  159. Swarup S., Gabriel D.W. (1989) Host-specific virulence genes from Xanthomonas citri enable several pathovars to induce canker-like lesions on citrus. In: Molecular biology of bacterial plant pathogens, Fallen Leaf Lake, South Lake Tahoe, California, 32Google Scholar
  160. Triplett E.W., Roberts G.P., Ludden P.W., Handelsman J. (1989) What’s new in nitrogen fixation. Am Soc Microbiol News 55: 15–21Google Scholar
  161. Truchet G., Barker D.G., Camut S., De Billy F., Vasse J., Huguet T. (1989) Alfalfa nodulation in the absence of Rhizobium. Mol Gen Genet 219: 65–68Google Scholar
  162. Upadhyaya N.M., Tucker W.T., Kumer Rao J.V.D.K., Dart P.J. (1985) Analysis of a leaf-curl phenomenon in pigeonpea (C ajanas cajan (L.) Millsp.) induced by Rhizobium nodulation. In: Evans H.J., Bottomley P.J., Newton W.E. (eds) Nitrogen fixation research progress. Martinus Nijhoff, Dordrecht, p 145Google Scholar
  163. Van Den Bosch K.A., Newcomb E.H. (1986) Immunogold localisation of nodule-specific uricase in developing soybean root nodules. Planta 167: 425–436Google Scholar
  164. Van Egeraat A.W.S.M. (1975) The possible role of homoserine in the development of R. leguminoarum in the rhizosphere of pea seedlings. Plant Soil 42: 387–396Google Scholar
  165. Van Kammen A. (1984) Suggested nomenclature for plant genes involved in nodulation and symboisis. Plant Mol Biol Rep 2: 103–131Google Scholar
  166. Vance C.P. (1983) Rhizohium infection and nodulation: a beneficial plant disease? Annu Rev Microbiol 37: 399–424PubMedGoogle Scholar
  167. Vance C.P., Egli M.A., Girffith S.M., Miller S.S. (1988) Plant regulated aspects of nodulation and nitrogen fixation. Plant Cell Environ 11: 413–427Google Scholar
  168. Vasse J.M., Truchet G. (1984) The Rhizohium-legume symbiosis: observation ofroot infection by bright-field microscopy after staining with methylene blue. Planta 161: 487–489Google Scholar
  169. Vidaver A.K. (1983) Bacteriocins: the lure and the reality. Plant Dis 67: 471–472Google Scholar
  170. Vincent J. (1974) Root nodule symbioses with Rhizobium. In: Quispel A. (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 265–341Google Scholar
  171. Vincent J.M. (1980) Factors controlling the legume-Rhizobium symbiosis. In: Newton W.E., Orme-Johnson W.H. (eds) Nitrogen fixation, vol 2. University Park Press, Baltimore, pp 103–129Google Scholar
  172. Weinman J.J., Djordjevic M.A., Sargent C.L., Dazzo F.B., Rolfe B.G. (1988) A molecular analysis of host range genes of Rhizobium trifolii. In: Palacios R., Verma D.P.S. (eds) Molecular genetics of plant-microbe interactions. American Phytopathological Society, St. Paul, MN, pp 33–34Google Scholar
  173. Yanofsky M.F., Nester E.W. (1986) Molecular characterisation of a host-range determining locus from Agrohacterium tumefaciens. J Bacteriol 168: 244–250PubMedGoogle Scholar
  174. Zaat S.A.J., Schripsema J., Wijffelman C.A., van Brussel A.A.N., Lugtenberg B.J.J. (1989) Analysis of the major inducers of the Rhizohium nod A promoter from Vicia sativa root exudate and their activity with different nod D genes. Plant Mol Biol 13: 175–188PubMedGoogle Scholar
  175. Zhou J.C., Tchan Y.T. Vincent J.M. (1985) Reproductive capacity of bacteroids in nodules of Trifolium repens L. and Glycine max (L.). Planta 163: 473–482Google Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Michael A. Djordjevic
    • 1
  • Barry G. Rolfe
    • 1
  • Wendy Lewis-Henderson
    • 1
  1. 1.Plant-Microbe Interaction GroupResearch School of Biological Sciences, Australian National UniversityCanberraAustralia

Personalised recommendations