Advertisement

Functional Models to Explain Gene-for-Gene Relationships in Plant-Pathogen Interactions

  • Pierre J. G. M. de Wit
Part of the Plant Gene Research book series (GENE)

Abstract

Flor’s pioneering genetic studies on flax (Linum usitatissimum) and its pathogen, the obligate parasite Melampsora lini, proved the genetic interdependence of host and parasite and eventually led to the gene-for-gene hypothesis (Flor, 1946). His work has strongly influenced hypotheses and investigations on the basis of host-parasite interactions during the last five decades.

Keywords

Hypersensitive Response Avirulence Gene Virulent Race Apoplastic Fluid Intercellular Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barret J.A. (1985) The gene-for-gene hypothesis: parable or paradigm. In:Rollinson O., Anderson R.M. (eds) Ecology and genetics of host-parasite interactions. Academic Press, London, pp 215–225 (Linnean Society of London)Google Scholar
  2. Bennetzen J.L., Qin M.M., Ingels S., Ellingboe A.H. (1988) Allele specific and mutatorassociated instability at the Rpl disease-resistance locus of maize. Nature 332: 369–370CrossRefGoogle Scholar
  3. Bonas U., Stall R.E., Staskawicz B.J. (1989) Genetic and structural characterization of the avirulence gene avrBs 3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218: 127–136PubMedCrossRefGoogle Scholar
  4. Brinkerhoff L.A. (1970) Variation in Xanthomonas malvacearum and its relation to control. Annu Rev Phytopathol 8: 85–110CrossRefGoogle Scholar
  5. Caten C.E. (1987) The concept of race in plant pathology. In: Wolfe M.S., Caten C.E.(eds) Populations of plant pathogens, their dynamics and genetics. Blackwell, Oxford, pp 21–37 (British Society of Plant Pathology)Google Scholar
  6. Chatterjee A.K., Vidaver A.K. (1986) Genetics of pathogenicity factors: application to phytopathogenic bacteria. Adv Plant Pathol 4: 1–224Google Scholar
  7. Christ B.J., Groth J.V. (1982) Inheritance of virulence to three bean cultivars in three isolates from the bean rust pathogen. Phytopathology 72: 767–770CrossRefGoogle Scholar
  8. Christ B.J., Person C.O., Pope D.O. (1987) The genetic determination of variation in pathogenicity. In: Wolfe M.S., Caten C.E. (eds) Populations of plant pathogens, their dynamics and genetics. Blackwell Oxford, pp 21–37 (British Society of Plant Pathology)Google Scholar
  9. Collinge D.B., Slusarenko A.J. (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9: 389–410CrossRefGoogle Scholar
  10. Cook A.A., Stall R.E. (1963) Inheritance of resistance in pepper to bacterial spot. Phytopathology 53: 1060–1062Google Scholar
  11. Crawford M.S., Chumley F.G., Weaver C.G., Valent B. (1986) Characterization of the heterokaryotic and vegetative diploid phases of Magnaporthe grisea. Genetics 114: 1111–1129PubMedGoogle Scholar
  12. Crute I.A.M., De Wit P.J.G.M., Wade M. (1985) Mechanisms by which genetically controlled resistance and virulence influence host colonization by fungal and bacterial parasites. In: Fraser R.S.S. (ed) Mechanisms of resistance to plant diseases. Martinus Nijhoff/Dr W. Junk, Dordrecht, pp 197–309Google Scholar
  13. Crute I.R. (1985) The genetic bases of relationships between microbial parasites and their hosts. In: Fraser R.S.S. (ed) Mechanisms of resistance to plant diseases. Martinus Nijhoff/Dr W. Junk, Dordrecht, pp 80–142Google Scholar
  14. De Wit P.J.G.M. (1977) A light and scanning-electron microscopic study of infection of tomato plants by virulent and avirulent races of Cladosporium fulvum. Neth J Plant Pathol 83: 109–122CrossRefGoogle Scholar
  15. De Wit PJGM. (1987) Specificity of active resistance mechanisms in plant-fungus interactions. In: Pegg G.F., Ayres P.G. (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 1–4Google Scholar
  16. De Wit P.J.G.M., Oliver R.P. (1989) The interaction between Cladosporium fulvum (syn. Fulvia fulva) and tomato: a model system in molecular plant pathology. In: Nevalainen H., Penttilii M.(eds) Molecular biology of filamentous fungi. Found Biotechn Industr Ferment Res 6: 227–236Google Scholar
  17. De Wit P.J.G.M., Spikman G. (1982) Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiol Plant Pathol 21: 1–11CrossRefGoogle Scholar
  18. De Wit P.J.G.M., Hofman J.E., Aarts J.M.M.J.G (1984) Origin of specific elicitors of chlorosis and necrosis occurring in intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Physiol Plant Pathol 24: 17–23CrossRefGoogle Scholar
  19. De Wit P.J.G.M., Hofman J.E., Velthuis G.C.M., Kuc J.A. (1985) Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Plant Physiol 77: 642–647PubMedCrossRefGoogle Scholar
  20. De Wit PJGM., Buurlage M.B., Hammond K.E. (1986) The occurrence of host, pathogen and interaction-specific proteins in the apoplast of Cladosporium fulvum (syn. Fulvia fulva) infected tomato-leaves. Physiol Mol Plant Pathol 29: 159–172CrossRefGoogle Scholar
  21. Dyck P.L., Samborski D.J. (1982) The inheritance of resistance to Puccinia recondita in a group of common wheat cultivars. Can J Gen Cytol 24: 273–283Google Scholar
  22. Ellingboe A.H. (1984) Genetics of host-parasite relations: an essay. Adv Plant Pathol 2: 131–151Google Scholar
  23. Farrara B.T., Illot T.W., Michelmore R.W. (1988) Genetic analysis of factors for resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa). Plant Pathol 36: 499–514.CrossRefGoogle Scholar
  24. Flor H.H. (1946) Genetics of pathogenicity in Melampsora lini. J Agricult Res 73: 335–357Google Scholar
  25. Flor H.H. (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9: 275–296CrossRefGoogle Scholar
  26. Gabriel D.W., Burges A., Lazo G.R. (1986) Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proc Natl Acad Sci USA 83: 6415–6419PubMedCrossRefGoogle Scholar
  27. Gabriel D.W., Loschke D.C., Rolfe B.G. (1988) Gene-for-gene recognition: the ion channel defense model. In: Palacios R., Verma D.P.S. (eds) Molecular genetics of plant-microbe interactions. American Phytopathological Society, St. Paul, MN, pp 3–14Google Scholar
  28. Hibberd A.M., Basset M.J., Stall R.E. (1987) Allelism tests of three dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology 77: 1304–1307CrossRefGoogle Scholar
  29. Higgins V.J., De Wit P.J.G.M. (1985) Use of race and cultivar specific elicitors from intercellular fluids for characterizing races of Cladosporium fulvum and resistant tomato cultivars. Phytopathology 75: 695–699CrossRefGoogle Scholar
  30. Hitchen F.E., Jenner C.E., Harper S., Mansfield J.W., Barber C.E., Daniels M.J. (1989) Determinant of cultivar specific avirulence cloned from Pseudomonas syringae pv. phaseolicola race 3. Physiol Mol Plant Pathol 34: 309–322CrossRefGoogle Scholar
  31. Hulbert S.H., Ilott T.W., Legg E.J., Lincoln S.E., Lander E.S., Michelmore R.W. (1988) Genetic analysis of the fungus Bremia lactucae, using restriction fragment length polymorfisms. Genetics 120: 947–958PubMedGoogle Scholar
  32. Huynh T.V. Dahlbeck D., Staskawicz B.J. (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374–1377PubMedCrossRefGoogle Scholar
  33. Ilott T.W., Durgan M.E., Michelmore R.W. (1987) Genetics of virulence in Californian populations of Bremia lactucae (lettuce downy mildew). Phytopathology 77: 1381–1386CrossRefGoogle Scholar
  34. Ilott T.W., Hulbert S.H., Michelmore R.W. (1989) Genetic analysis for the gene-for-gene interaction between lettuce (Lactucae sativa) and Bremia lactucae. Phytopathology 79: 888–897CrossRefGoogle Scholar
  35. Joosten MHAJ., De Wit PJGM. (1988) Isolation, purification and preliminary characterization of a protein specific for compatible Cladosporium fulvum (syn. Fulvia fulva)-tomato interactions. Physiol Mol Plant Pathol 33: 142–253CrossRefGoogle Scholar
  36. Judelson H.S., Michelmore R.W. (1989) Strategies for cloning avirulence genes from Bremia lactucae. In: Staskawicz B., Ahlquist P., Yoder O. (eds) Molecular biology of plant-pathogen interactions. AR Liss, New York, pp 71–85 (UCLA Symposia on Molecular and Cellular Biology), vol 101)Google Scholar
  37. Kearney B., Ronald P.C., Dahlbeck D., Staskawicz B.J. (1988) Molecular basis of evasion of plant host defense in bacterial spot disease of pepper. Nature 332: 541–543CrossRefGoogle Scholar
  38. Keen N.T. (1982) Specific recognition in gene-for-gene host parasite systems. Adv Plant Pathol 1: 35–82Google Scholar
  39. Keen N.T., Dawson W.O. (1992) Pathogen avirulence genes and elicitors of plant defense. In:Boller T., Meins F. (eds) Genes involved in plant defense. Springer, Wien New York, pp 85–114 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  40. Keen N.T., Staskawicz B.J. (1988) Host range determinants in plant pathogens and symbionts. Annu Rev Microbiol 42: 421–440CrossRefGoogle Scholar
  41. Keen N.T., Tamaki S., Kobayashi D., Gerhold D., Stayton M., Shen H., Gold S., Lorang J., Thordal-Christensen H., Dahlbeck D., Staskawicz B. (1990) Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant Microbe Interact 3: 112–121CrossRefGoogle Scholar
  42. Kelemu S., Leach J.E., (1990) Cloning and characterization of an avirulence gene from Xanthomonas campestris pv. oryzae. Mol Plant Microbe Interact 3: 59–65CrossRefGoogle Scholar
  43. Knott D.R., Anderson R.G. (1956) The inheritance of rust resistance. I. The inheritance of stem rust resistance in ten varieties of common wheat. Can J Agricult Sci 36: 174–195Google Scholar
  44. Kobayashi D.Y., Tamaki S.J., Keen N.T. (1989) Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on the non-host soybean. Proc Natl Acad Sci USA 86: 157–161PubMedCrossRefGoogle Scholar
  45. Kobayashi D.Y., Tamaki S.J. Trollinger D.J., Gold S., Keen N.T. (1990a) A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P. s. pv. tomato but devoid of the avirulence phenotype. Mol Plant Microbe Interact 3: 103–111PubMedCrossRefGoogle Scholar
  46. Kobayashi D.Y., Tamaki S.J., Keen N.T. (1990b) Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 3: 94–102PubMedCrossRefGoogle Scholar
  47. Lawrence G.J., Mayo G.M.E., Shepherd K.W. (1981) Interaction between genes controlling pathogenicity in the flax rust fungus. Phytopathology 71: 12–19CrossRefGoogle Scholar
  48. Lazarovits G., Higgins V.J. (1976) Ultrastructure of susceptible, resistant and immune reactions of tomato to races of Cladosporium fulvum. Can J Bot 54: 255–249Google Scholar
  49. Leong S.A., Holden D.W. (1989) Molecular genetic approaches to the study of fungal pathogenesis. Annu Rev Plant Pathol 27: 463–481Google Scholar
  50. Leung H., Borromeo E.S., Bernardo M.A., Notteghem J.J. (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology 78: 1227–1233CrossRefGoogle Scholar
  51. Lindgren P.B., Panopoulos N.J., Staskawicz B.J., Dahlbeck D. (1988) Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars of Pseudomonas syringae. Mol Gen Genet 211: 499–506CrossRefGoogle Scholar
  52. Martens J.W., Rothmana P.G., Mckenzie R.I.H., Brown P.D. (1981) Evidence of complementary gene action conferring resistance to Puccinia graminis avena in Avena sativa. Can J Gen Cytol 23: 581–595Google Scholar
  53. McHale M.T., Roberts I.N., Talbot N.J., Oliver R.P. (1989) Expression of reverse transcriptase genes in Fulvia fulva. Mol Plant Microbe Interact 2: 165–168PubMedCrossRefGoogle Scholar
  54. Mew T.W. (1987) Current status and future prospects of research on bacterial blight of rice. Annu Rev Plant Pathol 25: 359–382Google Scholar
  55. Michelmore R.W., Norwood J,M,, Ingram D.S., Crute I.R., Nicholson P. (1984) The inheritance of virulence in Bremia lactucae to match resistance factors 3, 5, 6, 8, 9, 10 and 11 in lettuce (Lactuca sativa). Plant Pathol 13: 301–31CrossRefGoogle Scholar
  56. Michelmore R.W., Ilott T.W., Hulbert S.H., Farrara B. (1988) The downey mildews. Adv Plant Pathol 6: 53–79Google Scholar
  57. Minsavage G.V., Dahlbeck D., Whalen M.C., Kearney B., Bonas U., Staskawicz B.J., Stall R.E. (1990) Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-interactions. Mol Plant Microbe Interact 3: 41–47CrossRefGoogle Scholar
  58. Napoli C., Staskawicz B.J. (1987) Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv. glycinea. J Bacteriol 169: 572–578PubMedGoogle Scholar
  59. Oliver R.P., Roberts I.N., Harling R., Kenyon L., Punt P.J., Dingemanse M.A., Van den Hondel C.A.M.J.J. (1987) Transformation of Fulvia fulva, a fungal pathogen of tomato, to hygromycin B resistance.Curr Genet12: 231–233CrossRefGoogle Scholar
  60. Parlevliet J.E., Zadoks J.C. (1977) The integrated concept of disease resistance; a new view including horizontal and vertical resistance in plants. Euphytica 26: 5–21CrossRefGoogle Scholar
  61. Parsons K.A., Chumley F.G., Valent B. (1987) Genetic transformation of the fungal pathogen responsible of rice blast disease. Proc Natl Acad Sci USA 84: 4161–4165PubMedCrossRefGoogle Scholar
  62. Person C.O. (1959) Gene-for-gene relationships in host: parasite systems. Can J Bot 37: 1101–1130CrossRefGoogle Scholar
  63. Person C.O., Mayo G.M.E. (1974) Genetic limitations of specific interactions between a host and its parasite. Can J Bot 52: 1339–1347CrossRefGoogle Scholar
  64. Person C.O., Mayo G.M.E. (1974) Genetic limitations of specific interactions between a host and its parasite. Can J Bot 52: 1339–1347CrossRefGoogle Scholar
  65. Roberts I.N., Oliver R.P., Punt P.J., van den Hondel C.A.M.J.J. (1989) Expression of the E. coli ß-glucuronidase gene in filamentous fungi. Curr Genet 15: 177–180PubMedCrossRefGoogle Scholar
  66. Ronald P.C., Staskawicz B.J. (1988) The avirulence gene avrBs 1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Mol Plant Microbe Interact 1: 191–198PubMedCrossRefGoogle Scholar
  67. Scholtens-Toma I.M.J., De Wit P.J.G.M. (1988) Purification and primary structure of a necrosis inducing peptide from apoplastic fluids of tomato infected with Cladosporium fulvum (syn. Fulvia fulra). Physiol Mol Plant Pathol 33: 59–67CrossRefGoogle Scholar
  68. Scholtens-Toma I.M.J. De Wit G.J.M., De Wit P.J.G.M. (1989) Characterization of apoplastic fluids isolated from tomato lines inoculated with new races of Cladosporium fulvum. Neth J Plant Pathol 95: 161–168CrossRefGoogle Scholar
  69. Shintaku M.H., Klueppel D.A., Yacoub A., Patil S.S. (1989) Cloning and partial characterization of an avirulence determinant from race 1 of Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 35:313–322CrossRefGoogle Scholar
  70. Sidhu G.S. (1980) Genetic analysis of plant parasitic systems. In: Proceedings XIV International Congress of Genetics I: 391–408Google Scholar
  71. Somerville C. (1989) Arabidopsis blooms. Plant Cell I: 1131–1135Google Scholar
  72. Spielman L.J., McMaster B.J., Fry W.E. (1989) Dominance and recessiveness at loci for virulence against potato and tomato in Phytophthora infestans. Theor Appl Genet 77: 832–838CrossRefGoogle Scholar
  73. Spielman L.J., Sweigard J.A., Shattock R.C., Fry W.E. (1990) The genetics of Phytophthora infestans: segregation of allozyme markers in F2 and backcross progeney and the inheritance of virulence against potato resistance genes R2 and R4 in Fl progeny. Exp Mycol 14: 57–69CrossRefGoogle Scholar
  74. Stakman E.C. (1917) Biologic forms of Puccinia graminis on cereals and grasses. J Agricult Res 10: 429–495Google Scholar
  75. Staskawicz B.J., Dahlbeck D., Keen N.T. (1984) Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci USA 81: 6024–6028PubMedCrossRefGoogle Scholar
  76. Staskawicz B., Dahlbeck D., Keen N., Napoli C. (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea.J Bacteriol 169: 5789–5794PubMedGoogle Scholar
  77. Swanson J., Kearney B., Dahlbeck D., Staskawicz B.B. (1988) Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Mol Plant Microbe Interact 1: 5–9CrossRefGoogle Scholar
  78. Talbot N.J., Coddington A., Roberts I.N., Oliver R.P. (1988a) Diploid construction by protoplast fusion in Fulvia fulva (syn. Cladosporium fulvum): genetic analysis of an imperfect fungal plant pathogen. Curr Genet 14: 567–572CrossRefGoogle Scholar
  79. Talbot N.J., Rawlins D., Coddington A. (1988b) A rapid method for ploidy determination in fungal cells. Curr Genet 14: 51–52CrossRefGoogle Scholar
  80. Tamaki S., Dahlbeck D., Staskawicz B.J., Keen N.T. (1988) Characterization and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea. J Bacteriol 170: 4846–4854PubMedGoogle Scholar
  81. Toxopeus H.J. (1956) Reflections on the origin of new physiologic races in Phytophthora infestans and the breeding for resistance in potatoes.Euphytica 5: 221–237Google Scholar
  82. Valent B., Chumley F., (1989) Genes for cultivar specificity in the rice blast fungus, Magnaporthe grisea. In: Lugtenberg B.J.J. (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin, Heidelberg New York, Tokyo, pp 415–422Google Scholar
  83. Van Kan J.A.L., Van Den Ackerveken A.F.J.M., De Wit P.J.G.M. (1991) Cloning and characterization of the avirulence gene aur 9 of the fungal pathogen Cladosporium fulvum. Mol Plant Microbe Interact 4: 52–59PubMedCrossRefGoogle Scholar
  84. Vivian A., Atherton G.T., Bevan J.R., Crute I.R., Mur L.A.J., Taylor J.D. (1989) Isolation and characterization of cloned DNA conferring specific avirulence in Pseudomonas syringae pv. pisi to pea (Pisum sativum) cultivars, which possess the resistance allele, R2.Physiol Mol Plant Pathol 34: 335–344CrossRefGoogle Scholar
  85. Whalen M., Stall R.E., Staskawicz B.J. (1988) Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci USA 85: 6743–6747PubMedCrossRefGoogle Scholar
  86. Yamada M., Kiyosawa S,, Yamamuchi T., Hirano T., Kobayashi T., Kushibuchi K., Watanabes S. (1976) Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan. Ann Phytopathol Soc Jpn 42: 216–219CrossRefGoogle Scholar
  87. Yaegashi H., Asaga K. (1981) Further studies on inheritance of pathogenicity in crosses of Pyricularia oryzae with Pyricularia sp. from finger millet. Ann Phytopathol Soc Jpn 47: 677–679CrossRefGoogle Scholar
  88. Yoder O.C., Valent B., Chumley F. (1986) Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology 76: 383–385CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Pierre J. G. M. de Wit
    • 1
  1. 1.Department of PhytopathologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations