Advertisement

Characterization and Analysis of Thionin Genes

  • F. Garcia-Olmedo
  • M. J. Carmona
  • J. J. Lopez-Fando
  • J. A. Fernandez
  • A. Castagnaro
  • A. Molina
  • C. Hernandez-Lucas
  • P. Carbonero
Part of the Plant Gene Research book series (GENE)

Abstract

The general designation of thionins has been proposed for a family of homologous proteins that have been isolated from different tissues in a wide range of plant taxa and have been variously named purothionins, viscotoxins, crambins, etc. (see Garcia-Olmedo et al., 1989). The possible involvement of thionins in plant defense was first suggested, on the basis of their in vitro toxicity to plant pathogens, by Fernandez de Caleya et al., (1972). Those observations had been prompted by earlier reports concerning the antimicrobial properties of these polypeptides (Stuart and Harris, 1942; Balls and Harris, 1944). Work on the thionins, which has been actively pursued over the past half-century, has been recently reviewed in detail (Garcia-Olmedo et al., 1989). For this reason. earlier work will only be partially summarized in the present chapter, which will focus on recent developments concerning thionin genes and their potential role in plant defense mechanisms.

Keywords

Wheat Flour Minimal Inhibitory Concentration Myogenic Differentiation Disulphide Bridge Viscum Album 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balls A.K., Harris T.H. (1944) The inhibitory effect of a protamine from wheat flour on the fermentation of wheat mashes.Cereal Chem 21: 74–79Google Scholar
  2. Balls A.K., Hale W.S., Harris T.H. (1942a) A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem 19: 279–288Google Scholar
  3. Balls A.K., Hale W.S., Harris T.H. (1942b) Further observations on a crystalline wheat protein. Cereal Chem 19: 840–844Google Scholar
  4. Bohlmann H., Apel K. (1987) Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley (Hordeum vulgare L.). Mol Gen Genet 207: 446–454CrossRefGoogle Scholar
  5. Bohlmann H., Clausen S., Behnke S., Giese H., Hiller C., Reimann-Philipp U., Schrader G., Barkholt V., Apel K. (1988) Leaf-specific thionins of barley—a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defense mechanism of plants. EMBO J 7: 1559–1565PubMedGoogle Scholar
  6. Brunger A.T., Clore G.M., Gronenborn A.M., Karplus M. (1986) Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin. Proc Natl Acad Sci USA 83: 3801–3805PubMedCrossRefGoogle Scholar
  7. Brunger A.T., Campbell R.L., Clore G.M., Gronenborn A.G., Karplus M., Petsko G.A., Teeter N.M. (1987) Solution of a protein crystal structure with a model obtained from NMR interproton distance restraints. Science235: 1049–1053PubMedCrossRefGoogle Scholar
  8. Buchanan B.B., Wolosiuk R.A., Schurmann P. (1979) Thioredoxin and enzyme regulation. Trends Biol Sci 4: 93–96CrossRefGoogle Scholar
  9. Carrasco L., Vazquez D., Hernandez-Lucas C., Carbonero P., Garcia-Olmedo F. (1981) Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem 116: 185–189PubMedCrossRefGoogle Scholar
  10. Castagnaro A., Maranua C., Carbonero P., Garcia-Olmedo F. (1992) Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor. J Mol Biol (in press)Google Scholar
  11. Clore G.M., Brunger A.T., Karplus M., Gronenborn A.M. (1986a) Application of molecular dynamics with interproton distance restraints to three-dimensional protein structure determination. A model study of crambin. J. Mol. Biol. 191: 523–551PubMedCrossRefGoogle Scholar
  12. Clore G.M., Nilges M., Sukumaran D.K., Brunger A.T., Karplus M., Gronenborn A.M. (1986b) The three-dimensional structure of rtl-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J 5: 2729–2735PubMedGoogle Scholar
  13. Coulson E.J., Harris T.H., Axelrod B. (1942) Effect on small laboratory animals of the injection of the crystalline hydrochloride of a sulfur protein from wheat flour. Cereal Chem 19: 301–307Google Scholar
  14. Ebrahim-Nesbat F., Behnke S., Kleinhofs A., Apel K. (1989) Cultivar-related differences in the distribution of cell-wall-bound thionins in compatible and incompatible interactions between barley and powdery mildew. Planta 179: 203–210CrossRefGoogle Scholar
  15. Feng D.-F., Doolittle R.F. (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25: 351–360PubMedCrossRefGoogle Scholar
  16. Fernandez de Caleya R. (1973) Caracterizaci6n quimica y propiedades antimicrobianas de purotioninas.PhD Thesis, Universidad Politecnia de Madrid, Madrid, SpainGoogle Scholar
  17. Fernandez de Caleya R., Gonzalez-Pascual B., Garcia-Olmedo F., Carbonero P. (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23: 998–1000Google Scholar
  18. Fernandez de Caleya R., Hernandez-Lucas C., Carbonero P., Garcia-Olmedo F. (1976) Gene expression in alloploids: genetic control of lipopurothionins in wheat. Genetics 83: 687–699Google Scholar
  19. Fisher R., Behnke S., Apel K. (1989) The effect of chemical stress on the polypeptide composition of the intercellular fluid of barley leaves. Planta 178: 61–68CrossRefGoogle Scholar
  20. Garcia-Olmedo F., Carbonero P., Jones B.L. (1982) Chromosomal locations of genes that control wheat endosperm proteins. Adv Cereal Sci Technol 5: 1–47Google Scholar
  21. Garcia-Olmedo F., Carbonero P., Hernandez-Lucas C., Paz-Ares J., Ponz F., Vicente O., Sierra J.M. (1983) Inhibition of eukaryotic cell-free protein synthesis by thionins from wheat endosperm. Biochim Biophys Acta 740: 52–56CrossRefGoogle Scholar
  22. Garcia-Olmedo F., Carbonero P., Salcedo G., Aragoncillo C., Hernandez-Lucas C., Paz-Ares J., Ponz F. (1984) Chromosomal location and expression of genes encoding low molecular weight proteins in wheat and related species. Kulturpflanze 32: 21–32Google Scholar
  23. Garcia-Olmedo F., Rodriguez-Palenzuela P., Hernandez-Lucas C., Ponz F., Marana C., Carmona M.J., Lopez-Fando J., Fernandez J.A., Carbonero P. (1989) The thionins: a protein family that includes purothionins, viscotoxins and cram bins. Oxford Surv Plant Mol Cell Biol 6: 31–60Google Scholar
  24. Gausing K. (1987) Thionin genes specifically expressed in barley leaves. Planta 171: 241–246CrossRefGoogle Scholar
  25. Hendrickson W.A., Teeter M.M. (1981) Structure of the hydrophobic protein cram bin determined directly from the anomalous scattering of sulphur. Nature 290: 107–113CrossRefGoogle Scholar
  26. Hernandez-Lucas C. Fernandez de Caleya R., Carbonero P. (1974) Inhibition of brewer’s yeasts by wheat purothionins. Appl Microbiol 28: 165–168PubMedGoogle Scholar
  27. Hernandez-Lucas C., Royo J., Paz-Ares J., Ponz F., Garcia-Olmedo F., Carbonero P. (1986) Polyadenylation site heterogeneity in mRNA encoding the precursor of the barley toxin rt-hordothionin. FEBS Lett 200: 103–105CrossRefGoogle Scholar
  28. Johnson T.C., Wada K., Buchanan B.B., Holmgren A. (1987) Reduction of purothionin by the wheat seed thioredoxin system. Plant Physiol 85: 446–451PubMedCrossRefGoogle Scholar
  29. Jones B.L., Meredith P. (1982) Inactivation of alpha-amylase activity by purothionins. Cereal Chern 59: 321Google Scholar
  30. Konopa J., Woynarowsky J.M., Lewandowska-Gumieniak M. (1980) Isolation of visco toxins. Cytotoxic basic polypeptides from Viscum album L. Hoppe Seylers Z Physiol Chem 361: 1525–1533PubMedCrossRefGoogle Scholar
  31. Kramer K.J., Jones B.L., Speirs R.D., Klassen L.W. and Kammer A.E. (1979) Toxicity of purothionin and its homologues to the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Toxicol Appl Pharmacol 48: 179–183PubMedCrossRefGoogle Scholar
  32. Kwak K.B., Lee Y.S., Suh S.W., Chung C.S., Ha D.B., Chung C.H. (1989) Purothionin from wheat endosperm reversibly blocks myogenic differentiation of chick embryonic muscle cells in culture. Exp Cell Res 183: 501–507PubMedCrossRefGoogle Scholar
  33. Nakanishi T., Yoshizumi H., Tahara S., Hakura A., Toyoshima K. (1979) Cytotoxicity of purothionin-A on various animal cells. Gann 70: 323–326PubMedGoogle Scholar
  34. Nose Y., Ichikawa M. (1968) Studies on the effects of flour extract on baker’s yeast. J Ferment Technol 46: 915–925Google Scholar
  35. Ohtani S., Okada T., Kagamiyama H., Yoshizumi H. (1975) The amino acid sequence of purothionin A, a lethal toxic protein for brewer’s yeasts from wheat. Agricult Biol Chem 39: 2269–2270CrossRefGoogle Scholar
  36. Ohtani S., Okada T., Yoshizumi H., Kagamiyama H. (1977) Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J Biochem 82: 753–767PubMedGoogle Scholar
  37. Okada T., Yoshizumi H. (1970) A lethal toxic substance for brewing yeast in wheat and barley. II. Isolation and some properties of toxic principle. Agricult Biol Chem 34: 1089–1094CrossRefGoogle Scholar
  38. Okada T., Yoshizumi H. (1973) The mode of action of toxic protein in wheat and barley on brewing yeast. Agricult Biol Chem 37: 2289–2294CrossRefGoogle Scholar
  39. Okada T., Yoshizumi H., Terashima Y. (1970) A lethal toxic substance for brewing yeast in wheat and barley. I. Assay of toxicity on various grains, and sensitivity of various yeast strains. Agricult Biol Chem 34: 1084–1088CrossRefGoogle Scholar
  40. Ozaki Y., Wada K., Hase T., Matsubara H., Nakanishi T., Yoshizumi H. (1980) Amino acid sequence of a purothionin homolog from barley flour. J Biochem 87: 549–555PubMedGoogle Scholar
  41. Ponz F., Paz-Ares J., Hernandez-Lucas C., Carbonero P., Garcia-Olmedo F. (1983) Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J 2: 1035–1040PubMedGoogle Scholar
  42. Ponz F., Paz-Ares J., Hernandez-Lucas C., Garcia-Olmedo F., Carbonero P. (1986) Cloning and nucleotide sequence of a cDNA encoding the precursor of the barley toxin (J,hordothionin. Eur J Biochem. 156: 131–135PubMedCrossRefGoogle Scholar
  43. Reimann-Philipp U., Behnke S., Batschauer A., Schafer E., Apel K. (1989a) The effect of light on the biosynthesis of leaf-specific thionins in barley, Hordeum vulgare. Eur J Biochem 182: 283–289PubMedCrossRefGoogle Scholar
  44. Reimann-Philipp U., Schrader G., Martinoia E., Barkholt V., Apel K. (l989b) Intracellular thionins of barley. A second group of leaf thionins closely related to but distinct from cell wall-bound. J Biol Chem 264: 8978–8984Google Scholar
  45. Rodriguez-Palenzuela P., Pintor-Toro J.A., Carbonero P., Garcia-Olmedo F. (1988) Nucleotide sequence and endosperm-specific expression of the structural gene for the toxin (J,hordothionin in barley (Hordeum vulgare L.). Gene 70: 271–281PubMedCrossRefGoogle Scholar
  46. Samuelsson G. (1974) Mistletoe toxins. Syst Zool 22: 566–569CrossRefGoogle Scholar
  47. Sanchez-Monge R., Delibes A., Hernandez-Lucas C., Carbonero P., Garcia-Olmedo F. (1979) Homoeologous chromosomal location of the genes encoding thionins in wheat and rye. Theor Appl Genet 54: 61–63CrossRefGoogle Scholar
  48. Stuart L.S., Harris T.H. (1942) Bactericidal and fungicidal properties of a crystalline protein isolated from unbleached wheat flour. Cereal Chem 19: 288–300Google Scholar
  49. Tahara S., Hakura A., Toyoshima K., Nakanishi T., Yoshizumi H. (1979) A new method for titration of murine leukemia virus using purothionin A. Virology 94: 470–473PubMedCrossRefGoogle Scholar
  50. Vernon L.P., Evett G.E., Zeikus R.D., Gray W.R. (1985) A toxic thionin from Pyrularia pubera: purification, properties, and amino acid sequence. Arch Biochem Biophys 238: 18–29PubMedCrossRefGoogle Scholar
  51. Wada K., Buchanan B.B. (1981) Purothionin: a seed protein with thioredoxin activity. FEBS Lett 124: 237–240CrossRefGoogle Scholar
  52. Whitlow M., Teeter M.M. (1985) Energy minimization for tertiary structure prediction of homologous proteins: ex-purothionin and viscotoxin A3 models from crambin. J Biochem Struct Dynam 2: 831–848CrossRefGoogle Scholar
  53. Woynarowski J.M., Konopa J. (1980) Interaction between DNA and Viscotoxins. Cytotoxic basic polypeptides from Viscurn album L. Hoppe Seylers Z Physiol Chem 361: 1535–1545PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • F. Garcia-Olmedo
    • 1
  • M. J. Carmona
    • 1
  • J. J. Lopez-Fando
    • 1
  • J. A. Fernandez
    • 1
  • A. Castagnaro
    • 1
  • A. Molina
    • 1
  • C. Hernandez-Lucas
    • 1
  • P. Carbonero
    • 1
  1. 1.Cátedra de Bioquimica y Biologia Molecular, E.T.S. Ingenieros AgrónomosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations