The Primary Structure of Plant Pathogenesis-related Glucanohydrolases and Their Genes

  • Frederick MeinsJr.
  • Christoph Sperisen
  • Jean-Marc Neuhaus
  • John Ryals
Part of the Plant Gene Research book series (GENE)


The endo-type glucanohydrolases ß-1,3-glucanase (E.C. and chitinase (E.C. are abundant proteins widely distributed in seedplant species (Clarke and Stone, 1962; Ballance and Manners, 1978; Powning and Irzykiewicz, 1965). The physiological functions of ß-1,3- glucanase and chitinase are not known. Based on the distribution of the enzyme and its putative substrates such as callose, it has been proposed that ß-1,3-glucanases may have a role in fruit ripening (Hinton and Pressey, 1980), pollen tube growth (Roggen and Stanley, 1969; Ori et al., 1990), coleoptile growth (Masuda and Wada, 1967), regulation of transport through vascular tissues (Clarke and Stone, 1962), cellulose biosynthesis (Meier et al., 1981) and cell division (Waterkeyn, 1967; Fulcher et al., 1976). Although the existence of other substrates has not been ruled out, chitin, the known substrate of chitinase, is not found in higher plants.


Wheat Germ Agglutinin Genomic Clone Glucanase Gene Stinging Nettle Tobacco Mosaic Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles F.B., Bosshart R.P., Forrence L.E., Habig W.H. (1971) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47: 129–134PubMedCrossRefGoogle Scholar
  2. Antoniw J.F., Ritter C.E., Pierpoint W.S., Van Loon L.C. (1980) Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol 47: 79–87CrossRefGoogle Scholar
  3. Antoniw J.F., Ooms G., White R.F., Wullems G.J., Vloten-Doting L. (1983) Pathogenesis-related proteins in plants and tissues of Nicotiana tabacum transformed by Agrobacterium tumefaciens. Plant Mol Biol 2: 317–320CrossRefGoogle Scholar
  4. Awade A. (1989) Les protéines PR (pathogenesis-related) de haricot: induction par infection virale on traitement chimmique. Purification, propriétés sérologiques, activités biologiques et structure primaire. Doctoral Dissertation, Université Louis Pasteur, Strasbourg, FranceGoogle Scholar
  5. Ballance G.M., Manners D.J. (1978) Partial purification and properties of an endo-1,3-ß-Dglucanase from germinated rye. Phytochemistry 17: 1539–1543CrossRefGoogle Scholar
  6. Ballance G.M., Svedsen I. (1988) Purification and amino acid sequence determination of an endo-1,3-ß-glucanase from barley. Carlsberg Res Comm 53: 411–419CrossRefGoogle Scholar
  7. Bauw G., De Loose M., Inzé D., Van Montagu M., Vandekerckhove J, (1987) Alterations in the phenotype of plant cells studied by NH2-terminal amino acid-sequence analysis of proteins electro blotted from two-dimensional gel-separated total extracts. Proc Natl Acad Sci USA 84: 4806–4810PubMedCrossRefGoogle Scholar
  8. Benfrey P.N., Chua N.-H. (1989) Regulated genes in transgenic plants. Science 244: 174–181CrossRefGoogle Scholar
  9. Bernasconi P., Pilet P.E., Jolles P. (1985) A one-step purification of a plant lysozyme from in vitro cultures of Rubus hispidus. FEBS Lett 186: 263–266CrossRefGoogle Scholar
  10. Bernasconi P., Locher R., Pilet P.E., jolles J., Jolles P. (1987) Purification and N-terminal amino-acid sequence of a basic lysozyme from Parthenocissus quinquifolia cultured in vitro. Biochim Biophys Acta 915: 254–260CrossRefGoogle Scholar
  11. Bol J.F. (1988) Structure and expression of plant genes encoding pathogenesis-related proteins. In: Verma D.P.S., Goldberg R.B. (eds) Temporal and spatial regulation of plant genes. Springer, Wien New York pp 201–221CrossRefGoogle Scholar
  12. Boller T. (1985) Induction of hydrolases as a defense reaction against pathogens. In: Key J.L., Kosuge T. (eds) Cellular and molecular biology of plant stress. AR Liss, New York, pp 247–262 (UCLA Symp Mol Cell Biol NS, vol 22)Google Scholar
  13. Boller T. (1987) Hydrolytic enzymes in plant disease resistance. In: Kosuge T., Nester E.W. (eds) Plant-microbe interactions, vol 2. Macmillan, New York, pp 385–413Google Scholar
  14. Boller T. (1988) Ethylene and the regulation of antifungal hydrolases in plants. Oxford Surv Plant Mol Cell Biol 5: 145–174Google Scholar
  15. Boller T., Métraux J.-P. (1988) Extracellular localization of chitinase in cucumber. Physiol Mol Plant Pathol 33: 11–16CrossRefGoogle Scholar
  16. Boller T., Vögeli U. (1984) Vacuolar localization of ethylene-induced chitinase in bean leaves. Plant Physiol 74: 442–444PubMedCrossRefGoogle Scholar
  17. Boller T., Gehri A., Mauch F., Vögeli U. (1983) Chitinase in bean leaves: induction by ethylene, purification. properties, and possible function. Planta 157: 22–31CrossRefGoogle Scholar
  18. Bowles D.J., Marcus S.E., Pappin D.I.C., Findlay J.B.C., Eliopoulos E., Maycox P.R., Burgess J. (1986) Posttranslational processing of concanavalin A precursors in jack bean cotyledons. J Cell Biol 102: 1284–1297PubMedCrossRefGoogle Scholar
  19. Broekaert W., van Paris J., Leyns F., Joos H., Peumans W.J. (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245: 1100–1102PubMedCrossRefGoogle Scholar
  20. Broekaert W., Lee H.-I., Kush A., Chua N.-H., Raikhel N. (1990) Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber free (Hevea brasiliensis). Proc Natl Acad Sci USA 87: 7633–7637PubMedCrossRefGoogle Scholar
  21. Broglie K.E., Gaynor J.J., Broglie R.M. (1986) Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci USA 83, 6820–6824PubMedCrossRefGoogle Scholar
  22. Broglie K.E., Biddle P., Cressman R., Broglie R. (1989) Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell 1: 599–607PubMedGoogle Scholar
  23. Cameron D.R. (1952) Inheritance in Nicotiana tabacum. XXIV. Intraspecific differences in chromosome structure. Genetics 37: 288–296PubMedGoogle Scholar
  24. Carr J.P., Klessig D.F. (1989) The pathogenesis-related proteins of plants. Genet Engineer 11: 65–109CrossRefGoogle Scholar
  25. Carrington D.M., Auffret A., Hanke D.E. (1985) Polypeptide ligation occurs during posttranslational modification of concanavalin A. Nature 313: 64–67PubMedCrossRefGoogle Scholar
  26. Castresana C., de Carvalho F., Gheysen G., Habets M., Inzé D, van Montagu M. (1990) Tissue specific and pathogen-induced regulation of a Nicotiana plumbaginifolia ß-1,3-glucanase gene. Plant Cell 2: 1131–1143PubMedGoogle Scholar
  27. Chrispeels M.J., Hartl P.M., Sturm A., Faye L. (1986) Characterization of the endoplasmic reticulum-associated precursor of concanavalin A. J Biol Chern 261: 10021–10024Google Scholar
  28. Clarke A.E., Stone B.A. (1962) ß-1,3-Glucan hydrolases from the grape vine (Vitis vinifera) and other plants. Phytochemistry 1: 175–188CrossRefGoogle Scholar
  29. Cornelissen B.J.C., Hooft van Huijsduijnen R.A.M., van Loon L.C., van Boom JH, Tromp M., Bol J.F. (1985) Virus-induced synthesis of messenger RNAs for precursor of pathogenesisrelated proteins in tobacco. EMBO J 4: 2167–2171PubMedGoogle Scholar
  30. Cornelissen B.J.C., Horowitz J., van Kan J.A.L., Goldberg R.B., Bol J.F. (1987) Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group. Nucleic Acids Res 15: 6799–6811PubMedCrossRefGoogle Scholar
  31. Côté F., Cutt J.R., Asselin A., Klessig D.F. (1991) Pathogenesis-related acidic ß-1,3-glucanase genes of tobacco are regulated by both stress and developmental signals. Mol Plant Microbe Interact 4: 173–181PubMedCrossRefGoogle Scholar
  32. Crouch M.L., Tenbarge K.M., Simon A.E., Ferl R. (1983) cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J Molec Appl Genet 2: 273–283Google Scholar
  33. Cutt J.R., Klessig D.F. (1992) Pathogenesis-related proteins. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer. Wien New York, pp 209–243 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  34. De Loose M., Alliotte T., Gheysen G., Genetello C., Gielen J., Soetaert P., Van Montagu M., Inzé D. (1988) Primary structure of a hormonally regulated ß-glucanase of Nicotiana plumbaginifolia. Gene 70: 12–23CrossRefGoogle Scholar
  35. Dickerson R.E., Geis I. (1969) The structure and function of proteins. Harper and Row, New YorkGoogle Scholar
  36. Dorel C., Voelker T.A., Herman E.M., Chrispeels M.J. (1989) Transport of proteins to the plant vacuole is not by bulk flow through the secretory system and requires positive sorting information. J Cell Biol 198: 327–337CrossRefGoogle Scholar
  37. Döring H.-P., Starlinger P. (1986) Molecular genetics of transposable elements in plants. Annu Rev Genet 20: 175–200PubMedCrossRefGoogle Scholar
  38. Durand-Tardif M. (1986) Etude de l’induction, par I’ethephon, de l’expression du gène codant pour la chitinase chez la tomate et analyse de la structure de ce gène. Doctoral Dissertation, Université de Paris Sud, Paris, FranceGoogle Scholar
  39. Edington B.V., Lamb C.J., Dixon R.A. (1991) cDNA cloning and characterization of a putative 1,3-ß-D-glucanase transcript by fungal elicitor in bean cell suspension cultures. Plant Mol Biol 16: 18–94CrossRefGoogle Scholar
  40. Esaka M., Enoki K., Kouchi B., Sasaki T. (1990) Purification and characterization of abundant secreted protein in suspension-cultured pumpkin cells. Plant Physiol 93: 1037–1041PubMedCrossRefGoogle Scholar
  41. Felix G., Meins F Jr (1985) Purification, immunoassay and characterization of an abundant cytokinin-regulated polypeptide in cultured tobacco tissues. Evidence the protein is a ß-1,3-glucanase. Planta 164: 423–428CrossRefGoogle Scholar
  42. Felix G., Meins F. Jr (1986) Developmental and hormonal regulation of ß-1,3-glucanase in tobacco. Planta 167: 206–211CrossRefGoogle Scholar
  43. Felix G., Meins F. Jr (1987) Ethylene regulation of ß-1,3-glucanase in tobacco. Planta 172: 386–392CrossRefGoogle Scholar
  44. Fincher G.B., Lock P.A., Morgan M.M., Lingelbach K., Wettenhall R.E.H., Mercer J.F.B., Brandt A., Thomsen K.K. (1986) Primary structure of the (1 → 3,1→4)-ß-D-glucan 4-glucohydrolase from barley aleurone. Proc Natl Acad Sci USA 83: 2081–2085PubMedCrossRefGoogle Scholar
  45. Fraser R.S.S. (1981) Evidence for the occurrence of the ‘pathogenesis-related’ proteins in leaves of healthy tobacco plants during flowering. Physiol Plant Pathol 19: 69–76Google Scholar
  46. Fukuda Y., Ohme M., Shinshi H. (1990) Gene structure and expression of a tobacco endochitinase gene in suspension cultured tobacco cells. Plant Mol Biol 16: 1–10CrossRefGoogle Scholar
  47. Fulcher R.G., McCully M.E., Setterfield G., Sutherland J. (1976) ß-1,3-Glucans may be associated with cell plate formation during cytokinesis. Can J Bot 54: 459–542CrossRefGoogle Scholar
  48. Garcia-Olmedo F., Carmona M.J., Lopez-Fando J.J., Fernandez J.A., Castagnaro A., Molina C., Hernandez-Lucas C., Carbonero P. (1992) Characterization and analysis of thionin genes. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer, Wien New York, pp 283–301 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]Google Scholar
  49. Gaynor J.J. (1988) Primary structure of an endochitinase mRNA from Solanum tuberosum. Nucleic Acids Res 16: 5210PubMedCrossRefGoogle Scholar
  50. Gaynor J.J., Unkenholz K.M. (1989) Sequence analysis of a genomic clone encoding an endochitinase from Solanum tuberosum. Nucleic Acids Res 17: 5855–5856Google Scholar
  51. Gerstel D.U. (1960) Segregation in new allopolyploids of Nicotiana. I. Comparison of 6 x (N. tahacum x tomentosiformis) and 6 x (N. tabacum x otophora). Genetics 45: 1723– 1734PubMedGoogle Scholar
  52. Gerstel D.U. (1963) Segregation in new allopolyploids of Nicotiana. II. Discordant ratios from individual loci in 6 x (N. tabacum x N. sylvestris). Genetics 48: 677–689PubMedGoogle Scholar
  53. Gerstel D.U. (1966) Evolutionary problems in some polyploid crop plants. Hereditas [Suppl] 2: 481–504Google Scholar
  54. Gerstel D.U. (1976) Tobacco. In: Simmonds N.W. (ed) Evolution of crop plants. Longman, London, pp 273–277Google Scholar
  55. Gheysen G., Inzé D., Soetaert P., van Montagu M., Castresana C. (1990) Sequence of a Nicotiana plumbaginifolia ß(J,3)-glucanase gene encoding a vacuolar isoform. Nucleic Acids Res 18: 6685PubMedCrossRefGoogle Scholar
  56. Gianinazzi S., Martin C., Vallee J.C. (1970) Hypersensibilite aux virus, températures et proteines solubles chez le Nicotiana Xanthi-nc. Apparition de nouvelles macromolécules lors de la répression de synthèse virale. C R Acad Sci Paris D 270: 2383–2386Google Scholar
  57. Godiard L., Ragueh F., Froissard D., Lequay J.-J., Grosset J., Chartier Y., Meyer Y., Marco Y. (1990) Analysis of the synthesis of several pathogenesis-related proteins in tobacco leaves infiltrated with water with compatible and incompatible isolates of Pseudomonas salanacearum. Mol Plant Microbe Interact 3: 207–213CrossRefGoogle Scholar
  58. Goodall G.J., Filipowicz W. (1989) The AU-rich sequences present in introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483PubMedCrossRefGoogle Scholar
  59. Goodspeed T.H. (1954) The genus Nicotiana. Chronica Botanica, Waltham, MAGoogle Scholar
  60. Gray J.C., Kung S.D., Wildman S.G., Sheen S.J. (1974) Origin of Nicotiana tabacum L. detected by polypeptide composition of fraction I protein. Nature 252: 226–227PubMedCrossRefGoogle Scholar
  61. Hein P. (1966) Grooks. The MIT Press, CambridgeGoogle Scholar
  62. Herget T., Schell J., Schreier P.H. (1990) Elicitor-specific induction of one member of the chitinase gene family in Arachis hypogaea. Mol Gen Genet 224: 469–476PubMedCrossRefGoogle Scholar
  63. Hinton D.M., Pressey R. (1980) Glucanase in fruits and vegetables. J Amer Soc Hort Sci 105: 499–502Google Scholar
  64. Høj P.B., Hartman D.J., Morrice N.A., Doan D.N.P., Fincher G.B. (1989a) Purification of (1 → 3) ß-glucan endohydrolase isozyme II from germinated barley and determination of its primary structure from a cDNA clone. Plant Mol Biol 13: 31–42PubMedCrossRefGoogle Scholar
  65. Høj P.B., Rodriguez E.B., Stick R.V., Stone B.A. (1989b) Differences in active site structure in a family of ß-glucan endohydrolases deduced from the kinetics of inactivation by epoxyalkyl ß-oligoglucosides. J Biol Chern 264: 4939–4947Google Scholar
  66. Hooft van Huijsduijnen R.A.M., van Loon L.C.,. Bol J.F. (1986) cDNA cloning of six mRNAS induced by TMV infection of tobacco and a characterization of their translation products. EMBO J 5: 2057–2061Google Scholar
  67. Hooft van Huijsduijnen R.A.M., Kauffmann S., Brederode F.T., Cornelissen B.J.C., Legrand M., Fritig B., Bol J.F. (1987) Homology between chitinases that are induced by TMV infection of tobacco. Plant Mol Biol 9: 411–420CrossRefGoogle Scholar
  68. Huang J.-K, Wen L., Swegle M., Tran H.-C., Thin T.H., Naylor H.M., Muthukrishnan S., Reeck G.R. (1991) Nucleotide sequence of a rice genomic clone that encodes a class I endochitinase. Plant Mol Biol 16: 479–480PubMedCrossRefGoogle Scholar
  69. Jacobsen S., Mikkelsen J.D., Hejgaard J. (1990) Characterization of two antifungal endochitinases from barley grain. Physiol Plant 79: 554–562CrossRefGoogle Scholar
  70. Jamet E., DUff A., Fleck J. (1987) Absence of some truncated genes in amphidiploid Nicotiana tabacum. Gene 59: 213–221PubMedCrossRefGoogle Scholar
  71. Jekel P.A., Hartman J.B.H., Beintema J.J. (1991) The primary structure of he va mine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex. Eur J Biochem 200: 123–130PubMedCrossRefGoogle Scholar
  72. Joshi C.P. (1987) Putative polyadenylation signals in nuclear genes of higher plants: compilation and analysis. Nucleic Acids Res 15: 9627–9640PubMedCrossRefGoogle Scholar
  73. Kauffmann S., Legrand M., Geoffroy P., Fritig B. (1987) Biological function of ‘pathogenesisrelated’ proteins: four PR proteins of tobacco have 1,3-ß-glucanase activity. EMBO J 6:3209–3212PubMedGoogle Scholar
  74. Keefe D., Hinz U., Meins F. Jr (1990) The effect of ethylene on the cell-type-specific and intracellular localization of ß-1,3-glucanase and chitinase in tobacco leaves. Planta 182: 43–51CrossRefGoogle Scholar
  75. Klebl F., Tanner W. (1989) Molecular cloning of a cell wall exo-ß-1,3-glucanase from Saccharomyces cerevisiae. J Bacteriol 171: 6259–6264PubMedGoogle Scholar
  76. Kombrink E., Schroder M., Hahlbrock K. (1988) Several “pathogenesis-related” proteins in potato are 1,3-ß-glucanases and chitinases. Proc Natl Acad Sci USA 85:782–786PubMedCrossRefGoogle Scholar
  77. Kombrink E., Beerhues L., Schröder M., Witte B., Hahlbrock K. (1990) Local and systemic gene activation in potato leaves infected with Phytophthora infestans. In: Gottfert M., Hennecke H., Paul H. (eds) Abstracts of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions. Eidgenossische Technische Hochschule, Zürich, p 203Google Scholar
  78. Kragh K.M., Jacobsen S., Mikkelsen J.D. (1990) Induction, purification and characterization of barley leaf chitinase. Plant Sci 71: 55–68CrossRefGoogle Scholar
  79. Kragh K.M., Jacobsen S., Mikkelsen J.D., Nielsen K.A. (1991) Purification and characterization of three chitinases and one ß-I,3-glucanase accumulating in the medium of cell suspension cultures of barley (Hordeum vulgare L.). Plant Sci 76: 65–77CrossRefGoogle Scholar
  80. Kush A., Goyvaerts E., Chye M.-L., Chua N.-H. (1990) Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). Proc Natl Acad Sci USA 87: 1787–1790PubMedCrossRefGoogle Scholar
  81. Laflamme D., Roxby R. (1989) Isolation and nucleotide sequence of cDNA clones encoding potato chitinase genes. Plant Mol Biol 13: 249–250PubMedCrossRefGoogle Scholar
  82. Leah R., Mikkelsen J., Mundy J., Svendsen I.B. (1987) Identification of a 28000 Dalton endochitinase in barley endosperm. Carlsberg Res Comm 52: 31–37CrossRefGoogle Scholar
  83. Leah R., Tommerup H., Svendsen I.B., Mundy J. (1991) Biochemical and molecular characterization of three barley seed proteins with anti-fungal properties. J Biol Chem 266: 1564–1573PubMedGoogle Scholar
  84. Legrand M., Kauffmann S., Geoffroy P., Fritig B. (1987) Biological function of pathogenesisrelated proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754PubMedCrossRefGoogle Scholar
  85. Lerner D.R., Raikhel N.V. (1989) Cloning and characterization of root specific barley lectin. Plant Physiol 91: 124–129PubMedCrossRefGoogle Scholar
  86. Linthorst H.J.M., Melchers L.S., Mayer A., van Roekel J.S.C., Cornelissen B.J.C., Bol J.F. (1990a) Analysis of gene families encoding acidic and basic ß-1,3-glucanases of tobacco. Proc Natl Acad Sci USA 87: 8756–8760PubMedCrossRefGoogle Scholar
  87. Linthorst H.J.M., van Loon L.C., van Rossum C.M.A., Mayer A., Bol J.F., van Roekel J.S.C., Meulenhoff J.S., Cornelissen B.J.C. (I990b) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact 3: 252–258Google Scholar
  88. Lucas J., Henschen A., Lottspeich F., Vögeli U., Boller T. (1985) Amino-terminal sequence of ethylene-induced bean leaf chitinase reveals similarities to sugar-binding domains of wheat germ agglutinin. FEBS Lett 193: 208–210CrossRefGoogle Scholar
  89. MacDonald H., Jones A.M., King P.J. (1991) Photoaffinity labelling of soluble auxin-binding proteins. J Biol Chem 266: 7393–7399PubMedGoogle Scholar
  90. Maeda N., Smithies O. (1986) The evolution of multigene families: human haptoglobin genes. Annu Rev Genetics 20: 81–108CrossRefGoogle Scholar
  91. Maher E.A., Lamb C.J., Dixon R.A. (1990) Molecular analysis of defense-related hydrolases from alfalfa. In: Göttfert M., Hennecke H., Palu H. (eds) Abstracts of the 5th International Symposium Molecular Genetics of Plant-Microbe Interactions. Eidgenössische Technische Hochschule. Zurich, p 215Google Scholar
  92. Lotan T., Ori N., Fluhr R. (1989) Pathogenesis-related proteins are developmentally regulated in tobacco flowers. Plant Cell 1: 881–887PubMedGoogle Scholar
  93. Margis-Pinheiro M., Metz-Boutigue M.H., Awade A., de Tapia M., le Ret M., Burkard G. (1991) Isolation of a complentary DNA encoding the bean PR4 chitinase: an acidic enzyme with an amino-terminus cysteine-rich domain. Plant Mol Biol 17: 243–253PubMedCrossRefGoogle Scholar
  94. Masuda Y., Wada S. (1967) Effect of ß-1,3-glucanase on the elongation growth of oat coleoptile. Bot Mag 80: 100–102Google Scholar
  95. Mauch F., Staehelin L.A. (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and ß-1,3-glucanase in bean leaves. Plant Cell 1: 447–457PubMedGoogle Scholar
  96. Mauch F., Mauch-Mani B., Boller T. (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and ß-1,3-glucanase. Plant Physiol 88: 936–942PubMedCrossRefGoogle Scholar
  97. Meier H., Buchs L., Buchala A.J., Homewood T. (1981) (1→3)-ß-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose fibres. Nature 289: 821–822CrossRefGoogle Scholar
  98. Meins F. Jr, Ahl P. (1989) Induction of chitinase and ß-1;3-glucanase in tobacco leaves infected with Pseudomonas tabaci and Phytophthora parasitica var. nicotianae. Plant Sci 61: 155–161CrossRefGoogle Scholar
  99. Memelink J., Hoge J.H.C., Schilperoort R.A. (1987) Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J 6: 3579–3583PubMedGoogle Scholar
  100. Métraux J.-P., Boller T. (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol Mol Plant Patho128: 161–169CrossRefGoogle Scholar
  101. Metraux J.-P., Burkhart W., Moyer M., Dincher S., Middlesteadt W., Williams S., Payne G., Carnes M., Ryals J. (1989) Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctionallysozyme/chitinase. Proc Natl Acad Sci USA 86: 896–900PubMedCrossRefGoogle Scholar
  102. Meyer A.D. (1990) Vacuolar localization of ß-1,3-glucanase and chitinase in tobacco. Diplomarbeit Universität Basel, Basle, SwitzerlandGoogle Scholar
  103. Mohnen D., Shinshi H., Felix G., Meins F. Jr (1987) Hormonal regulation of ß-1,3-glucanase messenger RNA levels in cultured tobacco tissues. EMBO J 4: 1631–1635Google Scholar
  104. Moore A.E., Stone B.A. (1972) A ß-1,3-glucan hydrolase from Nicotiana glutinosa. II. Specificity, action pattern and inhibitor studies. Biochim Biophys Acta 258: 248–264PubMedCrossRefGoogle Scholar
  105. Nagata Y., Burger M.M. (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116–3112PubMedGoogle Scholar
  106. Neale A.D., Wahleithner J.A., Lund M., Bonnett H.T., Kelly A., Meeks-Wagner D.R., Peacock W.J., Dennis E.S. (1990) Chitinase, ß-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684PubMedGoogle Scholar
  107. Neuhaus J.-M., Sticher L., Meins Jr, Boller T. (1991a) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88: 10362–10366PubMedCrossRefGoogle Scholar
  108. Neuhaus J.-M., Ahl-Goy P., Hinz U., Flores S., Meins F. Jr (1991b) High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16: 141–151PubMedCrossRefGoogle Scholar
  109. Nielsen K.K., Mikkelsen J.D. (1990) Purification and characterization of chitinases and ß-1,3-glucanases from Beta vulgaris leaves infected with Cercospora beticola. In: Göttfert M., Hennecke H., Paul H. (eds) Abstracts of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions. Eidgenossische Technische Hochschule: Zürich p 220Google Scholar
  110. Ohme-Takagi M., Shinshi H. (1990) Structure and expression of a tobacco ß-1,3-glucanase gene. Plant Mol Biol 15: 941–946PubMedCrossRefGoogle Scholar
  111. Okamuro J.K., Goldberg R.B. (1985) Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. Mol Gen Genet 198: 290–298CrossRefGoogle Scholar
  112. Ori N., Sessa G., Lotan T., Himmelhoch S., Fluhr R. (1990) A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9: 3249–3436Google Scholar
  113. Owens R.J., Northcote D.H. (1980) The purification of potato (Solanum tuberosum) cultivar King-Edwards lectin by affinity chromatography on a fetuin sepharose matrix. Phytochemistry 19: 1861–1862CrossRefGoogle Scholar
  114. Parent J.G., Asselin A. (1984) Detection of pathogenesis-related proteins (PR or b) and of other proteins in the intercelIular fluid of hypersensitive plants infected with tobacco mosaic virus. Can J Bot 62: 564–659CrossRefGoogle Scholar
  115. Parsons T.J., Bradshaw H.D. Jr, Gordon M.P. (1989) Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc Natl Acad Sci USA 86: 7895–7899PubMedCrossRefGoogle Scholar
  116. Payne G., Middlesteadt W., Desai N., Williams S., Dincher S., Carnes M., Ryals J. (1989) Isolation and sequence of a genomic clone encoding the basic form of pathogenesisrelated protein 1 from Nicotiana tabacum. Plant Mol Biol 12: 595–596CrossRefGoogle Scholar
  117. Payne G., Ahl P., Moyer M., Harper A., Beck J., Meins F. Jr, Ryals J. (1990a) Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco. Proc Natl Acad Sci USA 87: 98–102PubMedCrossRefGoogle Scholar
  118. Payne G., Ward E., Gaffney T., Ahl-Goy P., Moyer M., Harper A., Meins F. Jr, Ryals J. (1990b) Evidence for three structural classes of ß-1,3-glucanase in tobacco. Plant Mol Biol 15: 797–808PubMedCrossRefGoogle Scholar
  119. Pegg G.F. (1977) Glucanohydrolases of higher plants: a possible defence mechanism against parasitic fungi. In: Solheim B., Raa J. (eds) Cell wall biochemistry related to specificity in host-pathogen relationships. Universitetsforlaget, Tromso, pp 305–345Google Scholar
  120. Pfeffer S., Ullrich A. (1985) Is the precursor a receptor? Nature 313: 184PubMedCrossRefGoogle Scholar
  121. Pichersky E., Bernatzky R., Tanksley S.D., Cashmore A.R. (1986) Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-I,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 83: 3880–3884PubMedCrossRefGoogle Scholar
  122. Pierpoint W.S., Jackson P.J., Evans R.M. (1990) The presence of a thaumatin-like protein, a chitinase and a glucanase among the pathogenesis-related proteins of potato (Solanum tuberosum). Physiol Mol Plant Pathol 36: 325–338CrossRefGoogle Scholar
  123. Powning R.F., Irzykiewicz H. (1965) Studies on the chitinase system in bean and other seeds. Comp Biochem Physiol 14: 127–133PubMedCrossRefGoogle Scholar
  124. Raikhel N.V., Wilkins T.A. (1987) Isolation and characterization of a CON A clone encoding wheat germ agglutinin. Proc Natl Acad Sci USA 84: 6745–6749PubMedCrossRefGoogle Scholar
  125. Roby D., Esquerre-Tugaye M.-T. (1987) Induction of chitinases and translatable mRNA for these enzymes in melon plants infected with Colletotrichum lagenarium. Plant Sci 52: 175–185CrossRefGoogle Scholar
  126. Roby D., Broglie K., Cressman R., Biddle P., Chet I., Broglie R. (1990) Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999–1007PubMedGoogle Scholar
  127. Roggen H.P., Stanley R.G. (1969) Cell-wall hydrolysing enzymes in wall formation as measured by pollen-tube extension. Planta 84: 295–303CrossRefGoogle Scholar
  128. Samac D.A., Hironaka C.M., Yallaly P.E., Shah D.M. (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93: 907–914PubMedCrossRefGoogle Scholar
  129. Schlumbaum A., Mauch F., Vögeli U., Boller T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367CrossRefGoogle Scholar
  130. Shinshi H., Kato K. (I983a) Physical and chemical properties of ß-1,3-glucanase from cultured tobacco cells. Agricult Biol Chem 47: 1455–1460Google Scholar
  131. Shinshi H., Kato K. (1983b) In vitro synthesis of a larger precursor of tobacco ß-1,3-glucanase. Agricult Biol Chem 47: 1275–1280CrossRefGoogle Scholar
  132. Shinshi H., Mohnen D., Meins F. Jr (1987) Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA 64: 89–93CrossRefGoogle Scholar
  133. Shinshi H., Wenzler H., Neuhaus J.-M., Felix G., Hofsteenge J., Meins F. Jr (1988) Evidence for N-and C-terminal processing of a plant defense-related enzyme: primary structure of tobacco prepro-ß-1,3-glucanase. Proc Natl Acad Sci USA 85: 5541–5545PubMedCrossRefGoogle Scholar
  134. Shinshi H., Neuhaus J.-M., Ryals J., Meins F Jr (1990) Structure of a tobacco endochitinase gene: evidence that different chitinases genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol 14: 357–368PubMedCrossRefGoogle Scholar
  135. Simmons C.R., Litts J.C., Huang N., Rodriguez R.L. (1992) Structure of a rice ß-1,3-glucanase gene regulated by ethylene, cytokinin, wounding salicylic acid and fungal elicitors. Plant Mol Biol 18: 33–45PubMedCrossRefGoogle Scholar
  136. Sperisen C., Ryals J., Meins F Jr (1991) Comparison of cloned genes provides evidence for intergenomic exchange of DNA in the evolution of a tobacco ß-1,3-glucanase gene family. Proc Natl Acad Sci USA 88: 1820–1824PubMedCrossRefGoogle Scholar
  137. Stanford A., Bevan M., Northcote D. (1989) Differential expression within a family of novel wound induced genes in potato. Mol Gen Genet 215: 200–208PubMedCrossRefGoogle Scholar
  138. Strobaek S., Gibbons G.C., Haslett B., Boulter D., Wildman S.G. (1976) On the nature of the polymorphism of the small subunit of ribulose-1,5-diphosphate carboxylase (EC in the amphidiploid Nicotiana tabacum. Carlsberg Res Comm 41: 335–343CrossRefGoogle Scholar
  139. Swegle M., Huang J.-K., Lee G., Muthukrishnan S. (1989) Identification of an endochitinase cDNA clone from barley aleurone cells. Plant Mol Biol 12: 403–412CrossRefGoogle Scholar
  140. Takeuchi Y., Yoshikawa M., Takeba G., Tanaka K., Shibata D., Horino O. (1990) Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, ß-1,3-endoglucanase, in soybean. Plant Physiol 93: 673–682PubMedCrossRefGoogle Scholar
  141. Tata S.J., Beintema J.J., Balabaskaran S. (1983) The lysozyme of Hevea brasiliensis latex: isolation, purification, enzyme kinetics and a partial amino-acid sequence. J Rubber Res Inst Malaysia 31: 35–48Google Scholar
  142. Thornton J.M. (1981) Disulfide bridges in globular proteins. J Mol Biol 151: 261–288PubMedCrossRefGoogle Scholar
  143. Vad K., Mikkelsen J.D., Collinge D.B. (1991) Induction, purification and characterization of chitinase isolated from pea leaves inoculated with Ascochyta pisi. Planta 184: 24–29CrossRefGoogle Scholar
  144. van Buuren M., Neuhaus J.-M., Shinshi H., Ryals J., Meins F. Jr (1992) The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. Mol Gen Genet 232: 460–469PubMedCrossRefGoogle Scholar
  145. van den Bulke M., Bauw G., Castresana C., van Montagu M., Vandekerckhove J. (1989)Characterization of vacuolar and extracellular ß(1,3)-glucanases of tobacco: Evidence for a strictly compartmentalized plant defense system. Proc Natl Acad Sci USA86: 2673–2677CrossRefGoogle Scholar
  146. van Loon L.C., van Kammen A. (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: 199–211CrossRefGoogle Scholar
  147. van Parijs J., Broekaert W.F., Goldstein I.J., Peumans W.J. (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183: 258–264CrossRefGoogle Scholar
  148. Vaucheret H., Kronenberger J., Rouzé P., Caboche M. (1989) Complete nucleotide sequence of the two homeologous tobacco nitrate reductase genes. Plant Mol Biol 12: 597–600CrossRefGoogle Scholar
  149. Verburg J.G., Huynh Q.K. (1991) Purification and characterization of an antifungal chitinase from Arabidopsis thaliana. Plant Physiol 95: 450–455PubMedCrossRefGoogle Scholar
  150. Vögeli-Lange R., Hansen-Gehri A., Boller T., Meins F. Jr(1988) Induction of the defenserelated glucanohydrolases, ß-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Sci 54: 171–176CrossRefGoogle Scholar
  151. Vögeli-Lange R., Hart C., Nagy F., Meins F. Jr (1991) Regulation of the ß-1,3-glucanase B promoter in transgenic tobacco. In: Hallick R.B. (ed) Program and abstracts of the Third International Congress of Plant Molecular Biology, University of Arizona, Tucson, Abstract 288Google Scholar
  152. Vögeli U., Meins F Jr. Boller T. (1988) Co-ordinated regulation of chitinase and ß-1,3-glucanase in bean leaves. Planta 174: 364–372CrossRefGoogle Scholar
  153. Ward E.R., Payne G.B., Moyer M.B., Williams S.C., Dincher S.S., Sharkey K., Beck J., Taylor H.T., Ahl-Goy P., Meins F. Jr, Ryals J. (1991) Differential regulation of ß-1,3-glucanase mRNAS in response to pathogen infection. Plant Physiol 96:390–397PubMedCrossRefGoogle Scholar
  154. Waterkeyn L. (1967) Sur l’existence d’un “stade callosique,” presente par la paroi cellulaire, au cours de la cytokinese. C R Acad Sci Paris 265: 1792–1794Google Scholar
  155. Wessels J.G.H., Sietsma J.H. (1981) Fungal cell walls: a survey. In: Tanner W., Loewus F.A. (eds)Plant carbohydratcs II. Springer. Berlin Heidelberg New York Tokyo, pp 352–394 [Pirson A., Zimmermann M.H. (eds) Encyclopedia of plant physiology, NS, vol 13B]Google Scholar
  156. Wilkins T., Raikhel N. (1989) Expression of rice lectin is governed by two temporally and statically regulated mR NA in developing embryos. Plant Cell 1: 541–549PubMedGoogle Scholar
  157. Witte B., Beerhues L., Hahlbrock K., Kombrink E. (1990) Differential expression and localization of chitinases and 1,3-ß-glucanase in potato. In: Göttfert M., Hennecke H., Paul H. (eds) Abstracts of the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions. Eidgenossische Technische Höchschule, Zürich, p 218Google Scholar
  158. Wright C.S., Gavilines F., Peterson D.L. (1984) Primary structure of wheat germ agglutinin isolectin 2. Peptide order deduced from X-ray structure. Biochemistry 23: 280–287PubMedCrossRefGoogle Scholar
  159. Wright C.S., Raikhel N.V. (1989) Sequence variability in three wheat germ agglutinin isolectins: products of multiple genes in polyploid wheat. J Mol Evol 28: 327–336PubMedCrossRefGoogle Scholar
  160. Zhu Q., Lamb C.J. (1991) Isolation and characterization of a rice gene encoding a basic chitinase. Mol Gen Genet 226: 289–296PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Frederick MeinsJr.
    • 1
  • Christoph Sperisen
    • 1
  • Jean-Marc Neuhaus
    • 2
  • John Ryals
    • 3
  1. 1.Friedrich Miescher-InstitutBaselSwitzerland
  2. 2.Botanisches Institut, Abteilung für PflanzenphysiologieUniversität BaselBaselSwitzerland
  3. 3.Biotechnology Research, Ciba-Geigy Corp.USA

Personalised recommendations