Skip to main content

Spezielle Pharmakokinetik

  • Chapter
Neuro-Psychopharmaka
  • 74 Accesses

Zusammenfassung

Die Erforschung der Blut-Liquor-Hirn Schranke begann Ende des letzten Jahrhunderts durch Paul Ehrlich (Ehrlich 1885). Ihm fiel auf, daß verschiedene intravenös verabreichte Farbstoffe sämtliche Gewebe eines Tieres bis auf das Gehirn färbten. Er nahm jedoch an, daß die Farbstoffe eine geringe Affinität zum Gehirn hätten. Systematische Studien erfolgten später durch Goldmann (1913), der nachwies, daß sich nach intravenöser Injektion von Trypanblau alle Organe, außer Gehirn und Rückenmark, blau färben (1. Goldmann’scher Versuch) und daß umgekehrt, bei Injektion des Farbstoffes in die Liquorräume, nur Gehirn und Rückenmark angefärbt werden, der übrige Körper aber unverändert bleibt (2. Goldmann’scher Versuch). Dadurch hatte Goldmann gezeigt, daß nicht die unterschiedliche Affinität des Farbstoffes zu den Geweben, sondern eine Barriere zwischen Zentralnervensystem (ZNS) und Blut für das unterschiedliche Färbungsverhalten verantwortlich war.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bauer K, Kornhuber J (1987) Blood-cerebrospinal fluid barrier in schizophrenic patients. Eur Arch Psychiatr Neurol Sci 236: 257–259.

    Article  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P (1885) Das Sauerstoff-Bedürfnis des Organismus, eine farbenanalytische Studie. Hirschwald, Berlin.

    Google Scholar 

  • Fklghnhauer K (1986) The blood-brain barrier redefined. J Neurol 233: 193–194.

    Article  Google Scholar 

  • Ghersi-EgeaJF, Minn A, Siest G (1988) A new aspect of the protective functions of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci 42: 2515–2523.

    Article  Google Scholar 

  • Goldmann EE (1913) Vitalfärbung am Zentralnervensystem. Abh Preuss Akad Wiss, Phys-Math Kl I: 1–60.

    Google Scholar 

  • Kornhuber J, Kaiserauer CH, Kornhuber AW, Kornhuber ME (1987) Alcohol consumption and blood-cerebrospinal fluid barrier dysfunction in man. Neurosci Lett 79: 218–222.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28: 5–12.

    Article  PubMed  CAS  Google Scholar 

  • Preskorn SH, Irwin GH, Simpson S, Friesen D, Rinne J, Jerkovich G (1981) Medical therapies for mood disorders alter the blood-brain barrier. Science 213: 469–471.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI, Hori M, Klatzko I (1971) Reversible osmotic opening of the blood-brain barrier. Science 173: 1026–1028.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport SI, Hori M, Klatzko I (1972) Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223: 323–331.

    PubMed  CAS  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidases. J Cell Biol 34: 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren LE, Persson LI (1979) Chlorpromazine treatment of blood-brain barrier dysfunction. A quantitative and fluorescence microscopical study on small cerebral stab wounds in the rat. Acta Neuropathol (Berl) 46: 145–150.

    Article  CAS  Google Scholar 

  • Van Deurs B, Koehler JK (1979) Tight junctions in the choroid plexus epithelium — a freeze-fracture study including complementary replicas. J Cell Biol 80: 662–673.

    Article  PubMed  Google Scholar 

  • Wilson CWM, Brodie BB (1961) The absence of blood-brain barrier from certain areas of the central nervous system. J Pharmacol Exp Ther 133: 332–334.

    PubMed  CAS  Google Scholar 

Literatur

  • Abou-Saleh MT (1987) Prophylaxis of recurrent mood disorders. In: Jonhson FN (ed) Depression and mania. Modern lithium therapy. IRL Press, Oxford Washington, pp 38–41.

    Google Scholar 

  • Ackenheil M (1989) Clozapine — pharmacokinetic investigations and biochemical effects in man. Psychopharmacology 99: 32–37.

    Article  Google Scholar 

  • Altamura C, Mauri M, Cavallaro R, Colacurcio F, Gorni A, Baregi S (1988) Reduced haloperidol/ haloperidol ratio and clinical outcome in schizophrenia: preliminary evidences. Prog Neuro Psychopharmacol Biol Psychiatry 12: 689–694.

    Article  CAS  Google Scholar 

  • Asberg M, Crönholm B, Sjöqvist F, Tuck D (1971) Relationship between plasma level and therapeutic effect of nortriptyline. Br Med J 3: 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Axelsson R (1990) Plasma level monitoring of neuroleptic drugs — a way to improve the treatment of psychotic patients. National Board of Health and Welfare, Drug Information Committee, Sweden. Workshop 1989: Treatment with Neuroleptics, pp 39-51.

    Google Scholar 

  • Balant-Gorgia AE, Balant LP, Garrone G (1989) High blood concentrations of imipramine or clomipramine and therapeutic failure: a case report study using drug monitoring data. Ther Drug Monit 11: 415–420.

    PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant L (1987) Antipsychotic drugs. Clinical pharmacokinetics of potential candidates for plasma concentration monitoring. Clin Pharmacokinet 13: 65–90.

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Cohen BM, Teicher MH (1988) Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Arch Gen Psychiatry 45: 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ (1991) Clozapine, a novel antipsychotic agent. N Engl J Med 324: 746–754.

    Article  PubMed  CAS  Google Scholar 

  • Baumann P (1990) Pharmakokinetische Aspekte der Therapieresistenz mit Antidepressiva. In: Möller HJ (Hrsg) Therapieresistenz unter Antidepressiva-Behandlung. Springer, Berlin Heidelberg New York Tokyo, S 85–98 (Tropon-Symposium V)

    Chapter  Google Scholar 

  • Baumann P (1991) Pharmakokinetische und pharmakogenetische Aspekte von Antidepressiva und deren Metaboliten-Relevanz für die Klinik. In: Steinberg R (Hrsg) Depressionen. Mensch und Medizin (16. Psychiatrie-Symposion Pfalzklinik Landeck, 1990, Klingenmünster). Tilia, Klingenmünster, S 51–59.

    Google Scholar 

  • Baumann P, Breyer-Pfaff U, Kuss HJ, Müller-Oerlinghausen B, Sandoz M (1982) Quality control of amitriptyline and nortriptyline plasma level assessment: a multicenter study. Pharmacopsychiatry 15: 156–160.

    Article  CAS  Google Scholar 

  • Baumann P, Jonzier-Perey M, Koeb L, Lé PK, Tinguely D, Schöpf J (1986) Amitriptyline pharmacokinetics and clinical response. I. Free and total plasma amitriptyline and nortriptyline. Int Clin Psychopharmacol 1: 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Benfield P, Ward A (1986) Fluvoxamine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 32: 313–334.

    Article  PubMed  CAS  Google Scholar 

  • Benfield P, Heel RC, Lewis SP (1986) Fluoxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 32: 481–508.

    Article  PubMed  CAS  Google Scholar 

  • Beresford R, Ward A (1987) Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in psychosis. Drugs 33: 31–49.

    Article  PubMed  CAS  Google Scholar 

  • Bialer M (1991) Clinical pharmacology of valpromide. Clin Pharmacokinet 20: 114–122.

    Article  PubMed  CAS  Google Scholar 

  • Boulton AA, Baker GB, Courre RT (eds) (1990) Neuromethods. Analysis of psychiatric drugs. Humana Press, Clifton, NJ.

    Google Scholar 

  • Boyer WF, Feighner JP (1991) Pharmacokinetics and drug interactions: 81–88. In: Feighner JP, Boyer WF (eds) Perspectives in psychiatry, vol 1. Selective serotonin reuptake inhibitors. The clinical use of citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline. Wiley, Chichester New York Toronto Singapore.

    Google Scholar 

  • Breyer-Pfaff U, Gaertner HJ (1987) Antidepressiva. Pharmakologie, therapeutischer Einsatz und Klinik der Depression. Medizinisch-pharmakologisches Kompendium, Bd 5. Wissenschaftliche Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  • Brøsen K, Klysner R, Gram LF, Otton SW, Bech P, Bertilsson L (1986) Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 30: 679–684.

    Article  PubMed  Google Scholar 

  • Brown WA, Silver MA (1985) Serum neuroleptic levels and clinical outcome in schizophrenic patients treated with fluphenazine decanoate. J Clin Psychopharmacology 5: 143–147.

    CAS  Google Scholar 

  • Buick AR, Doig MV, Jeal SC, Land GS, McDowall RD (1990) Method validation in the bioanalytical laboratory. J Pharm Biomed Anal 8: 629–637.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty BS, Midha KK, McKay G, Hawes EM, Hubbard JW, Korchinski ED, Choc MG, Robinson WT (1989) Single dose kinetics of thioridazine and its two psychoactive metabolites in healthy humans: a dose proportionality study. J Pharm Sci 78: 796–801.

    Article  PubMed  CAS  Google Scholar 

  • Coccaro EF, Adan F, Allen D, Cooper TB (1987) Plasma-serum differences in the assessment of tricyclic antidepressant blood levels. Int Clin Psychopharmacol 2: 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Cohen BM, Lipinski JF, Waternaux C (1989) A fixed dose study of the plasma concentration and clinical effects of thioridazine and its major metabolites. Psychopharmacology 97: 481–488.

    Article  PubMed  CAS  Google Scholar 

  • Cooper TB, Simpson GM (1976) The 24-hour lithium level as a prognosticator of dosage requirements: a 2-year follow-up study. Am J Psychiatry 133: 440–443.

    PubMed  CAS  Google Scholar 

  • Coppens HJ, Slooff CJ, Paans AMJ, Wiegman T, Vaalburg W, Korf J (1998) High central D2-dopamine receptor occupancy as assessed with positron emission tomography in medicated but therapy-resistant schizophrenic patients. Biol Psychiatry 29: 629–634.

    Article  Google Scholar 

  • Cotter LM, Eadie MJ, Hooper WD, Lander CM, Smith GA, Tyrer JH (1977) The pharmacokinetics of carbamazepine. Eur J Clin Pharmacol 12: 451–456.

    Article  PubMed  CAS  Google Scholar 

  • Cournoyer G, De Montigny C, Ouellette J, Langlois R, Elie R, Caille G, Le Morvan P (1987) A comparative double-blind controlled study of trimipramine and amitriptyline in major depression: lack of correlation with 5-hydroxytryptamine reuptake blockade. J Clin Psychopharmacol 7: 385–393.

    Article  PubMed  CAS  Google Scholar 

  • Coutts RT, Baker GB (1989) Implications of chirality and geometric isomerism in some psychoactive drugs and their metabolites. Chirality 1: 99–120.

    Article  PubMed  CAS  Google Scholar 

  • Dawling S (1988) Is there a practical alternative to therapeutic drug monitoring in therapy with tricyclic antidepressants?. Clin Chem 34: 841–847.

    PubMed  CAS  Google Scholar 

  • De Oliveira IR, Do Prado-Lima PAS, Samuel-Lajeunesse B (1989a) Monitoring of tricyclic antidepressant plasma levels and clinical response: a review of the literature. Part I. Psychiatr Psychobiol 4: 43–60.

    Google Scholar 

  • De Oliveira IR, Do Prado-Lima PAS, Samuel-Lajeunesse B (1989b) Monitoring of tricyclic antidepressant plasma levels and clinical response: a review of the literature. Part II. Psychiatr Psychobiol 4: 81–90.

    Google Scholar 

  • Dechant KL, Clissold SP (1991) Paroxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 41: 225–253.

    Article  PubMed  CAS  Google Scholar 

  • Doogan DP, Caillard V (1988) Sertraline: a new antidepressant. J Clin Psychiatry [Suppl 8] 49: 46–51.

    Google Scholar 

  • Dorey RC, Preskorn SH, Widener PK (1988) Results compared for tricyclic antidepressants as assayed by liquid chromatography and enzyme immunoassay. Clin Chem 34: 2348–2351.

    PubMed  CAS  Google Scholar 

  • Drug Information Committee, Sweden (1990) National Board of Health and Welfare. Workshop: Treatment with neuroleptics. Uppsala, 1989.

    Google Scholar 

  • Dufour H, Bouchacourt M, Thermoz P, Viala A, Rop PP, Gouezo F, Durand A, Hopfner Petersen HE (1987) Citalopram — a high selective 5-HT uptake inhibitor in the treatment of depressed patients. Int Clin Psychopharmacol 2: 225–237.

    Article  PubMed  CAS  Google Scholar 

  • Eap CB, Souche A, Koeb L, Baumann P (1998) Light-induced racemization: artifacts in the analysis of the diastereoisomeric pairs of thioridazine 5-sulfoxide in the plasma and urine of patients treated with thioridazine. Ther Drug Monit 13: 356–362.

    Article  Google Scholar 

  • Ernst R, Williams L, Dalbey M, Collins C, Pankey S (1987) Homogeneous enzyme immunoassay (EMIT) protocol for monitoring tricyclic antidepressants on the COBAS-BIO centrifugal analyzer. Ther Drug Monit 9: 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Nordström AL, Sedvall G (1989) D1-and D2dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99: 28–31.

    Article  Google Scholar 

  • Fazio A, Spina E, Pisani F (1987) Tricyclic antidepressants analysis by liquid chromatography. J Liquid Chromatogr 10: 223–240.

    Article  CAS  Google Scholar 

  • Fitton A, Heel RC (1990) Clozapine-A review of its pharmacological properties, and therapeutic use in schizophrenia. Drugs 40: 722–747.

    Article  PubMed  CAS  Google Scholar 

  • Fraser AD, Bryan W, Isner AF (1989) Evaluation of the EMIT amitriptyline and nortriptyline assays for the determination of serum clomipramine and desmethylclomipramine. Ther Drug Monit 11: 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Fredricson Overø K (1989) The pharmacokinetic and safety evaluation of citalopram from pre-clinical and clinical data. In: Montgomery SA (ed) Citalopram — The new antidepressant from Lundbeck research. Proc Symp XXII Nordiske Psykiater Kongres, Reykjavik, August 1988. Excerpta Medica, Amsterdam.

    Google Scholar 

  • Friedel RO, Veith RC, Bloom V, Bielski RJ (1979) Desipramine plasma levels and clinical response in depressed outpatients. Commun Psychopharmacol 3: 81–87.

    PubMed  CAS  Google Scholar 

  • Froemming JS, Francis Lam YW, Jann MW, Davis CM (1989) Pharmacokinetics of haloperidol. Clin Pharmacokinet 17: 396–423.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach J, Behnke K, Heltberg J, Munk-Andersen E, Nielsen H (1985) Sulpiride and haloperidol in schizophrenia: a double-blind cross-over study of therapeutic effect, side effects and plasma concentrations. Br J Psychiatry 147: 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Ghabrial H, Prakash C, Tacke UG, Blair IA, Wilkinson GR (1991) Geometric isomerization of doxepin during its N-demethylation in humans. Drug Metab Dispos 19: 596–599.

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Friedman H, Burstein ES, Scavone JM, Blyden GT, Ochs HR, Miller LG, Harmatz JS (1987) Trazodone kinetics: effect of age, gender, and obesity. Clin Pharmacol Ther 42: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Guentert TW, Tucker G, Korn A, Pfefen JP, Haefelfinger P, Schoerlin MP (1990) Pharmacokinetics of moclobemide after single and multiple oral dosing with 150 milligrams 3 times daily for 15 days. Acta Psychiatr Scand 82[Suppl 360]: 91–93.

    Article  Google Scholar 

  • Hammer WM, Brodie BB (1967) Application of isotope derivative technique to assay of secondary amines: estimation of desipramine by acetylation with H3-acetic anhydride. J Pharm Exp Ther 157: 503–508.

    CAS  Google Scholar 

  • Haring C, Meise U, Humpel C, Saria A, Fleischhacker WW, Hinterhuber H (1989) Dose-related plasma levels of clozapine: influence of smoking behaviour, sex and age. Psychopharmacology 99: 38–40.

    Article  Google Scholar 

  • Hrdina PD, Lapierre YD (1986) Plasma levels of maprotiline and zimelidine and their relationship to clinical response in depressed patients. Ther Drug Monit 8: 400–406.

    Article  PubMed  CAS  Google Scholar 

  • Hrdina PD, Lapierre YD, Horn E, Bakish D, Browne M (1988) Antidepressant plasma levels and clinical response in depressed patients treated with oxaprotiline and doxepin. Int Clin Psychopharmacol 3: 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Hrdina PD, Bakish D, Swenson S, Lapierre YD (1990) Cis-and trans-isomers of doxepin and desmethyldoxepin in the plasma of depressed patients treated with doxepin. Ther Drug Monit 12: 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Kelwala S, Gershon S (1988) Antipsychotic drugs in schizophrenia: current issues. Int Clin Psychopharmacol 3: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Jostell KG, Lapierre YD, Canad Remoxipride Study Group (1990) Plasma concentration of remoxipride in relation to antipsychotic effect and adverse symptoms. Acta Psychiatr Scand 82[Suppl 358]: 48–50.

    Article  Google Scholar 

  • Jørgensen A (1986) Metabolism and pharmacokinetics of antipsychotic drugs. Prog Drug Metab 9: 111–174.

    Google Scholar 

  • Kaye CM, Haddock RE, Langley PF, Mellows G, Tasker TCG, Zussman BD, Greb WH (1989) A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr Scand 80[Suppl 350]: 60–75.

    Article  Google Scholar 

  • Kelly MW, Perry PJ, Holstad SG, Garvey MJ (1989) Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Ther Drug Monit 11: 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RL, McMullin MM, Crookham SB, Rieders F (1990) Report of a fluoxetine fatality. J Anal Toxicol 14: 327–329.

    PubMed  CAS  Google Scholar 

  • Ko GN, Korpi ER, Linnoila M (1985) On the clinical relevance and methods of quantification of plasma concentrations of neuroleptics. J Clin Psychopharmacol 5: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Kragh-Sørensen P, Fredricson Overø K, Lindegaard Petersen O, Jensen K, Parnas W (1981) The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacol Toxicol 48: 53–60.

    Article  Google Scholar 

  • Lancaster SG, Gonzalez JP (1989) Lofepramine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 37: 123–140.

    Article  PubMed  CAS  Google Scholar 

  • Laux G, Riederer P (1992) Plasmaspiegelbestimmung von Psychopharmaka: Therapeutisches Drug Monitoring. Versuch einer ersten Standortbestimmung. Wissenschaftliche Verlagsgesellschaft, Stuttgart (im Druck)

    Google Scholar 

  • Leinonen E, Ylitalo P (1991) The influence of ageing on serum levels of tertiary tricyclic antidepressants. Hum Psychopharmacol 6: 139–146.

    Article  Google Scholar 

  • Levy AB, Walters M, Stern SL (1987) Reduced serum tricyclic levels due to gel separators. J Clin Psychopharmacol 7: 423–424.

    Article  PubMed  CAS  Google Scholar 

  • Maguire KP, Burrows GD, Norman TR, Scoggins BA (1981) Metabolism and pharmacokinetics of dothiepin. Br J Clin Pharmacol 12: 405–409.

    Article  PubMed  CAS  Google Scholar 

  • Marder SR, Hubbard JW, Van Putten T, Midha KK (1989) Pharmacokinetics of long-acting injectable neuroleptic drugs: clinical implications. Psychopharmacology 98: 433–439.

    Article  PubMed  CAS  Google Scholar 

  • Marder SR, Midha KK, Van Putten T, Aravagiri M, Hawes EM, Hubbard JW, McKay G, Mintz J (1998) Plasma levels of fluphenazine in patients receiving fluphenazine decanoate. Relationship to clinical response. Br J Psychiatry 158: 658–665.

    Article  Google Scholar 

  • Matsumoto K, Kanba S, Kubo H, Yagi G, Iri H, Yuki H (1989) Automated determination of drugs in serum by columnswitching high-performance liquid chromatography. IV. Separation of tricyclic and tetracyclic antidepressants and their metabolites. Clin Chem 35: 453–456.

    PubMed  CAS  Google Scholar 

  • Mazure CM, Nelson JC, Jatlow PI, Kincare P, Bowers MB (1990) The relationship between blood perphenazine levels, early resolution of psychotic symptoms, and side effects. J Clin Psychiatry 51: 330–334.

    PubMed  CAS  Google Scholar 

  • McDowall RD, Doyle E, Murkitt GS, Picot VS (1989) Sample preparation for the HPLC analysis of drugs in biological fluids. J Pharm Biomed Anal 7: 1087–1096.

    Article  PubMed  CAS  Google Scholar 

  • McElroy SL, Keck PE, Pope HG, Hudson JI (1989) Valproate in psychiatric disorders: literature review and clinical guidelines. J Clin Psychiatry 50 [Suppl]: 23–29.

    PubMed  Google Scholar 

  • Meenan GM, Barlotta S, Lehrer M (1990) Urinary tricyclic antidepressant screening: comparison of results obtained with Abbott FPIA reagents and Syva EIA reagents. J Anal Toxicol 14: 273–276.

    PubMed  CAS  Google Scholar 

  • Mendlewicz J, Linkowski P, Rees JA (1980) A double-blind comparison of dothiepin and amitripty-line in patients with primary affective disorder: serum levels and clinical response. Br J Psychiatry 136: 154–160.

    Article  PubMed  CAS  Google Scholar 

  • Mengel H, Lund J, Lange J (1983) Bioavailability and pharmacokinetics of femoxetine. Arzneimittelforschung/Drug Res 33: 462–466.

    CAS  Google Scholar 

  • Meyer JW, Woggon B, Baumann P, Meyer UA (1990) Clinical implications of slow sulfoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur J Clin Pharmacol 39: 613–614.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery S, McAuley R, Montgomery DB (1978) Relationship between mianserin plasma levels and antidepressant effect in a double-blind trial comparing a single-night time and divided daily dose regimens. Br J Clin Pharmacol 5[Suppl 1]: 71–76.

    Google Scholar 

  • Nathan RS, Perel JM, Pollock BG, Kupfer DJ (1990) The role of neuropharmacologic selectivity in antidepressant action: fluvoxamine versus desipramine. J Clin Psychiatry 51: 367–372.

    PubMed  CAS  Google Scholar 

  • Nolen WA, Jansen GS, Broekman M (1988) Measuring plasma levels of carbamazepine. A pharmacokinetic study in patients with affective disorders. Pharmacopsychiatry 21: 252–254.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg G, Svensson C, Olofsson U, Axelsson R, Martensson E (1987) Total plasma concentrations, red blood cell concentrations, and radio-receptor assay values compared with unbound plasma concentrations of thioridazine and thioridazine metabolites in psychiatric patients. Ther Drug Monit 9: 426–432.

    Article  PubMed  CAS  Google Scholar 

  • Okuma T, Yamashita I, Takahashi R, Itoh H, Otsuki S, Watanabe S, Sarai K, Hazama H, Inanaga K (1990) Comparison of the antimanic efficacy of carb-amazepine and lithium carbonate by double-blind controlled study. Pharmacopsychiatry 23: 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Orsulak PJ (1989) Therapeutic monitoring of antidepressant drugs: guidelines updated. Ther Drug Monit 11: 497–501.

    Article  PubMed  CAS  Google Scholar 

  • Orsulak PJ, Haven MC, Burton ME, Akers LC (1989) Issues in methodology and applications for therapeutic monitoring of antidepressant drugs. Clin Chem 35: 1318–1325.

    PubMed  CAS  Google Scholar 

  • Pankey S, Collins C, Jaklitsch A, Izutsu A, Hu M, Pirio M, Singh P (1986) Quantitative homogeneous enzyme immunoassays for amitriptyline, nortriptyline, imipramine, and desipramine. Clin Chem 32: 768–772.

    PubMed  CAS  Google Scholar 

  • Pato MT, Murphy DL, DeVane CL (1991) Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation. J Clin Psychopharmacol 11: 224–225.

    Article  PubMed  CAS  Google Scholar 

  • Perry PJ, Alexander B (1987) Dosage and serum levels. In: Jonhson FN (ed) Depression and mania. Modern lithium therapy. IRL Press, Oxford Washington, pp 67–72.

    Google Scholar 

  • Perry PJ, Miller DD, Arndt SV, Cadoret RJ (1990) Clozapine and norclozapine plasma concentrations and clinical response of treatment-refractory schizophrenic patients. Am J Psychiatry 148: 231–235.

    Google Scholar 

  • Preskorn SH (1989) Tricyclic antidepressants: the whys and hows of therapeutic drug monitoring. J Clin Psychiatry 50 [Suppl]: 34–42.

    PubMed  Google Scholar 

  • Preskorn SH, Fleck RJ, Schroeder DH (1990) Therapeutic drug monitoring of bupropion. Am J Psychiatry 147: 1690–1691.

    PubMed  CAS  Google Scholar 

  • Rao ML, Brown WA, Wagner R (1988) Radioreceptor assay and high-performance liquid chromatography yield similar results for serum thioridazine and its major metabolites. Ther Drug Monit 10: 184–187.

    Article  PubMed  CAS  Google Scholar 

  • Rao ML (1989) Monitoring of serum bioactivity levels of perazine and its metabolites by radioreceptor assay. Pharmacopsychiatry 22: 104–107.

    Article  PubMed  CAS  Google Scholar 

  • Reyntjens AJM, Heykants JJP, Woestenborghs RJH, Gelders YG, Aerts TJL (1982) Pharmacokinetics of haloperidol decanoate. A 2-year follow-up. Int Pharmacopsychiatry 17: 238–246.

    Google Scholar 

  • Rifkin A, Doddi S, Karajgi B, Borenstein M, Wachspress M (1991) Dosage of haloperidol for schizophrenia. Arch Gen Psychiatry 48: 166–170.

    Article  PubMed  CAS  Google Scholar 

  • Schoerlin MP, Mayersohn M, Korn A, Eggers H (1987) Disposition kinetics of moclobemide, a monoamine oxidase-A enzyme inhibitor: single and multiple dosing in normal subjects. Clin Pharmacol Ther 42: 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Sindrup SH, Brøsen K, Gram LF (1990) Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit 12: 445–449.

    Article  PubMed  CAS  Google Scholar 

  • Someya T, Shibasaki M, Kato T, Noguchi T, Ishida N, Takahashi S (1990) Haloperidol reductase activity in red blood cells from oriental patients on haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 15: 275–278.

    Google Scholar 

  • Sommi RW, Crismon ML, Bowden CL (1987) Fluoxetine: a serotonin-specific, second-generation antidepressant. Pharmacotherapy 7: 1–15.

    PubMed  CAS  Google Scholar 

  • Spar JE (1987) Plasma trazodone concentrations in elderly depressed inpatients: cardiac effects and short-term efficacy. J Clin Psychopharmacol 7: 406–409.

    Article  PubMed  CAS  Google Scholar 

  • Sternbach H (1991) The serotonin syndrome. Am J Psychiatry 148: 705–713.

    PubMed  CAS  Google Scholar 

  • Suckow RF, Cooper TB (1984) Determination of trimipramine and metabolites in plasma by liquid chromatography with electrochemical detection. J Pharmaceut Sci 73: 1745–1748.

    Article  CAS  Google Scholar 

  • Suominen J, Tamminen T, Elosuo R, Manniche PM (1988) Efficacy and tolerance of femoxetine and imipramine in the treatment of depressive states. A randomized, double-blind study. Pharmacopsychiatry 21: 238–244.

    Article  PubMed  CAS  Google Scholar 

  • Tamayo M, Fernandez de Gatta MM, Gutierrez JR, Garcia MJ, Dominguez-Gil A (1988) High levels of tricyclic antidepressants in conventional therapy: determinant factors. Int J Clin Pharmacol Ther Toxicol 26: 495–499.

    PubMed  CAS  Google Scholar 

  • Task Force (1985) Tricyclic antidepressants — Blood level measurements and clinical outcome: an APA Task Force report. Am J Psychiatry 142: 155–162.

    Google Scholar 

  • Tasker TCG, Kaye CM, Zussman BD, Link CGG (1989) Paroxetine plasma levels: lack of correlation with efficacy or adverse events. Acta Psychiatr Scand 80[Suppl 350]: 152–155.

    Article  Google Scholar 

  • Träskman L, Asberg M, Bertilsson L, Cronholm B, Mellström B, Neckers LM, Sjöqvist F, Thorén P, Tybring G (1979) Plasma levels of chlorimipramine and its demethyl metabolite during treatment of depression. Clin Pharmacol Ther 26: 600–610.

    PubMed  Google Scholar 

  • Tyndale RF, Kalow W, Inaba T (1991) Oxidation of reduced haloperidol to haloperidol: involvement of human P-450IID6 (sparteine/debrisoquine monooxygenase). Br J Clin Pharmacol 31: 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Volavka J, Cooper TB (1987) Review of haloperidol blood level and clinical response: looking through the window. J Clin Psychopharmacol 7: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Van Bahr C, Movin G, Yisak WA, Jostell KG, Widman M (1990) Clinical pharmacokinetics of remoxipride. Acta Psychiatr Scand 82[Suppl 358]: 41–44.

    Article  Google Scholar 

  • Wilson JF, Tsanaclis LM, Williams J, Tedstone JE, Richens A (1989) External quality assurance of tricyclic antidepressant measurements in serum: eight years of progress?. Ther Drug Monit 11: 196–199.

    Article  PubMed  CAS  Google Scholar 

  • Wistedt B, Jørgensen A, Wiles D (1982) A depot neuroleptic withdrawal study. Psychopharmacology 78: 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Wolkin A, Brodle JD, Barouche F, Rotrosen J, Wolf AP, Smith M, Fowler J, Cooper TB (1989) Dopamine receptor occupancy and plasma haloperidol levels. Arch Gen Psychiatry 46: 482–483.

    Article  PubMed  CAS  Google Scholar 

  • Wong SHY (1988) Measurement of antidepressants by liquid chromatography: a review of current methodology. Clin Chem 34: 848–855.

    PubMed  CAS  Google Scholar 

  • Wong SHY (1989) Advances in liquid chromatography and related methodologies for therapeutic drug monitoring. J Pharm Biomed Anal 7: 1011–1032.

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Alvan G, Grind M, Graffner C, Sjöqvist F (1984) Relationship of N-demethylation of amiflamine and its metabolite to debrisoquine hydroxylation polymorphism. Clin Pharmacol Ther 36: 515–519.

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Schulz P, Dayer P, Balant L, Kubli A, Gertsch C, Garrone G (1982) Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Arch Psychiatr Nervenkr 232: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Genet Ch, Dayer P, Aeschlimann JM, Garrone G (1986) Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. Eur J Clin Pharmacol 31: 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant L, Zysset TH (1987) High plasma concentrations of desmethylclomipramine after chronic administration of clomipramine to a poor metabolizer. Eur J Clin Pharmacol 32: 101–102.

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Garrone G (1989) High blood concentrations of imipramine or clomipramine and therapeutic failure: a case report study using drug monitoring data. Ther Drug Monit 11: 415–420.

    PubMed  CAS  Google Scholar 

  • Barbeau A, Roy M, Paris S, Cloutier T, Plasse L, Poirier J (1985) Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet i: 1213–1216.

    Article  Google Scholar 

  • Baumann P, Jonzier-Perey M (1988) GC-and GC-MS procedures for simultaneous phenotyping with dextromethorphan and mephenytoin. Clin Chim Acta 171: 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Eap CB (1989) Contribution of the variants of α1-acid glycoprotein to its binding of drugs. In: Baumann, Eap, Müller, Tillement (eds) Alpha1-acid glycoprotein: genetics, biochemistry, physiological functions, and pharmacology. AR Liss, New York, pp 379–397.

    Google Scholar 

  • Baumann P, Jonzier-Perey M, Koeb L, Küpfer A, Tinguely D, Schöpf J (1986) Amitriptyline pharmacokinetics and clinical response. II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1: 102–112.

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Baettig D, Bryois C, Eichenberger P, Jonzier-Perey M, Monney C, Woggon B (1989) Einfluß einer Amitriptylin oder Thioridazin-Behandlung auf das Ergebnis des pharmakogenetischen Dextromethorphan-Tests. In: Saletu B (Hrsg) Biologische Psychiatrie. 2. Drei-Länder-Symposium für Biologische Psychiatrie, Innsbruck, September 1988. Thieme, Stuttgart New York, S 161–163.

    Google Scholar 

  • Bertilsson L, Mellström B, Sjöqvist F, Martensson B, Asberg M (1981) Slow hydroxylation of nor-triptyline and concomitant poor debrisoquine hydroxylation: clinical implications. Lancet i: 560–561.

    Article  Google Scholar 

  • Bertilsson L, Aberg-Wistedt A, Gustafsson LL, Nordin C (1985) Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricylic antidepressants. Ther Drug Monit 7: 478–480.

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Henthorn TK, Sanz E, Tybring G, Säwe J, Villén T (1989a) Importance of genetic factors in the regulation of diazepam metabolism: Relationship to S-mephenytoin, but not debrisoquine, hydroxylation phenotype. Clin Pharmacol Ther 45: 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Alm C, De las Carreras C, Widen J, Edman G, Schalling D (1989b) Debrisoquine hydroxylation polymorphism and personality. Lancet ii: 555.

    Article  Google Scholar 

  • Bertilsson L, Baillie TA, Reviriego J (1990) Factors influencing the metabolism of diazepam. Pharmacol Ther 45: 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Brøsen K (1990) Recent developments in hepatic drug oxidation. Implications for clinical pharmacokinetics. Clin Pharmacokinet 18: 220–239.

    Article  PubMed  Google Scholar 

  • Brøsen K, Gram LF (1988) First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 43: 400–406.

    Article  PubMed  Google Scholar 

  • Brøsen K, Gram LF (1989) Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 36: 537–547.

    Article  PubMed  Google Scholar 

  • Brøsen K, Otton SV, Gram LF (1986) Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 40: 543–549.

    Article  PubMed  Google Scholar 

  • Dahl-Puustinen ML, Lidén A, Alm C, Nordin C, Bertilsson L (1989) Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 46: 78–81.

    Article  PubMed  CAS  Google Scholar 

  • Dayer P, Leemann T, Striberni R (1989) Dextromethorphan O-demethylation in liver microsomes as a prototype reaction to monitor cytochrome P-450 db1 activity. Clin Pharmacol Ther 45: 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Derenne F, Joanne C, Vandel S, Bertschy G, Volmat R, Bechtel P (1989) Debrisoquine oxidative phenotyping and psychiatric drug treatment. Eur J Clin Pharmacol 36: 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Dundee JW, Collier PS, Carlisle RJT, Harper KW (1986) Prolonged midazolam elimination half-life. Br J Clin Pharmacol 21: 425–429.

    Article  PubMed  CAS  Google Scholar 

  • Eap CB, Souche A, Koeb L, Jonzier-Perey M, Cuendet C, Baumann P (1990) Influence of quinidine on the metabolism of trimipramine in two healthy volunteers after an oral dose of 75 mg trimipramine: preliminary results. In: Ingelman Sundberg M, Gustafsson JA, Orrenius S (eds) Drug metabolizing enzymes: genetics, regulation and toxicology. Proc VIIIth Int Symposium on Microsomes and Drug Oxidations. Stockholm, June 1990, p 196.

    Google Scholar 

  • Eichelbaum M (1988) Genetic polymorphism of sparteine/debrisoquine oxidation. Atlas Sci Pharmacol: 243-251.

    Google Scholar 

  • Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ (1979) Defective N-oxidation of sparteine in man: A new pharmacogenetic defect. Eur J Clin Pharmacol 16: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Baur MP, Dengler HJ, Osikowska-Evers BO, Tieves G, Zekorn C, Rittner C (1987) Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br J Clin Pharmacol 23: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Fonne-Pfister R, Meyer UA (1988) Xenobiotic and endobiotic inhibitors of cytochrome P-450db1 function, the target of the debrisoquine/sparteine type polymorphism. Biochem Pharmacol 37: 3829–3835.

    Article  PubMed  CAS  Google Scholar 

  • Friedman H, Greenblatt DJ, Burstein ES, Harmatz JS, Shader RI (1986) Population study of triazolam pharmacokinetics. Br J Clin Pharmacol 22: 639–642.

    Article  PubMed  CAS  Google Scholar 

  • Gabris G, Baumann P, Jonzier-Perey M, Bosshart P, Woggon B, Küpfer A (1985) N-methylation of maprotiline in debrisoquine/mephenytoin-phenotyped depressive patients. Biochem Pharmacol 34: 409–410.

    Article  CAS  Google Scholar 

  • Gascon MP, Paichard C, Dayer C (1989) In vitro forecasting of drug interactions with midazolam. Experientia 45: A66.

    Google Scholar 

  • Gonzalez FJ (1990) Molecular genetics of the P-450 superfamily. Pharmacol Ther 45: 1–38.

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Brøsen K, Kragh-Sørensen P, Christensen P (1989a) Steady-state plasma levels of E-and Z-10-OH-nortriptyline in nortriptyline-treated patients: significance of concurrent medication and the sparteine oxidation phenotype. Ther Drug Monit 11: 508–514.

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Debruyne D, Caillard V, Boulenger JP, Lacotte J, Moulin M, Zarifian E (1989b) Substantial rise in sparteine metabolic ratio during haloperidol treatment. Br J Clin Pharmacol 27: 272–275.

    Article  PubMed  CAS  Google Scholar 

  • Heim M, Meyer UA (1990) Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336: 529–532.

    Article  PubMed  CAS  Google Scholar 

  • Inaba T, Jurima M, Mahon WA, Kalow W (1985) In vitro inhibition studies of two isozymes of human liver cytochrome P-450. Mephenytoin p-hydroxylase and sparteine monooxygenase. Drug Metab Dispos 13: 443–448.

    PubMed  CAS  Google Scholar 

  • Jann MW, Chang WH, Davis CM, Chen TY, Deng HC, Lung FW, Ereshefsky L et al. (1990) Haloperidol and reduced haloperidol plasma levels in Chinese vs. non-chinese psychiatric patients. Psychiatry Res 30: 45–52.

    Article  Google Scholar 

  • Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA (1989) Oxidation of midazolam and triazolam by human liver cytochrome P-450IIIA4. Mol Pharmacol 36: 89–96.

    PubMed  CAS  Google Scholar 

  • Küpfer A, Preisig R (1984) Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 26: 753–759.

    Article  PubMed  Google Scholar 

  • Mahgoub A, Dring LG, Idle JR, Lancaster R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet ii: 584–586.

    Article  Google Scholar 

  • Meehan RR, Gosden JR, Rout D, Hastie ND, Friedberg T, Adesnik M, Buckland R, van Heyningen V, Fletcher J, Spurr NK, Sweeney J, Wolf CR (1988) Human cytochrome P-450 PB-I: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am J Hum Genet 42: 026–037.

    CAS  Google Scholar 

  • Mellström B, Bertilsson L, Lou YC, Säwe J, Sjöqvist F (1983) Amitriptyline metabolism: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 34: 516–520.

    Article  PubMed  Google Scholar 

  • Mellström B, Säwe J, Bertilsson L, Sjöqvist F (1986) Amitriptyline metabolism: association with debrisoquine hydroxylation in nonsmokers. Clin Pharmacol Ther 39: 369–371.

    Article  PubMed  Google Scholar 

  • Meyer JW, Woggon B, Küpfer A (1988) Importance of oxidative polymorphism on clinical efficacy and side-effects of imipramine — Aretrospective study. Pharmacopsychiatry 21: 365–366.

    Article  PubMed  CAS  Google Scholar 

  • Meyer UA, Skoda RC, Zanger UM (1990) The genetic polymorphism of debrisoquine/sparteine metabolism — molecular mechanisms. Pharmacol Ther 46: 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Meyer JW, Woggon B, Baumann P, Bryois C, Jonzier M, Koeb L, Meyer UA (1990) Slow sulfoxidation of thioridazine in a poor metabolizer of the debrisoquine type: clinical implications. Eur J Clin Pharmacol 39: 613–614.

    Article  PubMed  CAS  Google Scholar 

  • Monsma FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342: 926–929.

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Price LH, Jatlow PI (1986) Neuroleptic dose and desipramine concentrations during combined treatment of unipolar delusional depression. Am J Psychiatry 143: 1151–1154.

    PubMed  CAS  Google Scholar 

  • Niznik HB, Tyndale RF, Sallee FR, Gonzalez FJ, Hardwick JP, Inaba T, Kalow W (1990 ) The dopamine transporter and cytochrome P-450IID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct (3H)GBR-12935 binding proteins. Arch Biochem Biophys 276: 424–432.

    Article  PubMed  CAS  Google Scholar 

  • Nordin C, Siwers B, Benitez J, Bertilsson L (1985) Plasma concentrations of nortriptyline and its 10-hydroxy metabolite in depressed patients — relationship to the debrisoquine hydroxylation metabolic ratio. Br J Clin Pharmacol 19: 832–835.

    Article  PubMed  CAS  Google Scholar 

  • Schmid B, Bircher J, Preisig R, Küpfer A (1985) Polymorphic dextromethorphan metabolism: co-segregation of oxidative O-demethylation with debrisoquine hydroxylation. Clin Pharmacol Ther 38: 618–624.

    Article  PubMed  CAS  Google Scholar 

  • Schnyder C, Baumann P, Jonzier-Perey M, Koeb L, Wertheimer J (1985) Utilisation de l’amitriptyline à faible dose en psychogériatrie. Une étude clinique, pharmacocinétique et pharmacogénétique. Schweiz Med Wochenschr 115: 1128–1134.

    PubMed  CAS  Google Scholar 

  • Skoda RC, Gonzalez FJ, Demierre A, Meyer UA (1988) Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci 85: 5240–5243.

    Article  PubMed  CAS  Google Scholar 

  • Someya T, Takahashi S, Shibasaki M, Inaba T, Cheung SW, Tang SW (1990) Reduced haloperidol/ haloperidol ratios in plasma: polymorphism in Japanese psychiatric patients. Psychiatry Res 31: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Steiner E, Ericsson Ö, Sjöqvist F (1987) Hydroxylation of desmethylimipramine: dependence on the debrisoquine hydroxylation phenotype. Clin Pharmacol Ther 41: 314–319.

    Article  PubMed  CAS  Google Scholar 

  • Syvälahti EKG, Lindberg R, Kallio J, de Vocht M (1986) Inhibitory effects of neuroleptics on debrisoquine oxidation in man. Br J Clin Pharmacol 22: 89–92.

    PubMed  Google Scholar 

  • von Bahr C, Spina E, Birgersson C, Ericsson O, Göransson M, Henthorn T, Sjöqvist F (1985) Inhibition of desmethylimipramine 2-hydroxylation by drugs in human liver microsomes. Biochem Pharmacol 34: 2501–2505.

    Article  Google Scholar 

  • von Bahr C, Guengerich FP, Movin G, Nordin C (1989) The use of human liver banks in pharmacogenetic research. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry (Psychopharmacology series 7). Springer, Berlin Heidelberg New York Tokyo, pp 163–171.

    Chapter  Google Scholar 

  • Ward SA, Walle T, Walle UK, Wilkinson GR, Branch RA (1989) Propranolol’s metabolism is determined by both mephenytoin and debrisoquine hydroxylase activities. Clin Pharmacol Ther 45. 72–79.

    Article  PubMed  CAS  Google Scholar 

  • Wedlund PJ, Aslanian WS, McAllister CB, Wilkinson GR, Branch RA (1984) Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new oxidative drug metabolism polymorphism. Clin Pharmacol Ther 36: 773–780.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GR, Guengerich FP, Branch RA (1989) Genetic polymorphism of S-mephenytoin hydroxylation. Pharmacol Ther 43: 53–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Kornhuber, J., Baumann, P. (1992). Spezielle Pharmakokinetik. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6674-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6674-1_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7377-0

  • Online ISBN: 978-3-7091-6674-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics