Proton Spectroscopic Imaging in Cerebral Ischaemia Where we Stand and What Can be Expected

  • J. W. Berkelbach van der Sprenkel
  • N. M. J. Knufman
  • P. C. van Rijen
  • P. R. Luyten
  • J. A. den Hollander
  • C. A. F. Tulleken
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 19)


Cerebrovascular research is traditionally focused on the effects of changes in blood flow on neurological function. With the improvement of technical developments it became possible to correlate local cerebral blood flow (CBF) with focal neurological deficits. From local CBF measurement we learned that perfusion above the threshold of 20 ml/100 mg/min does not always mean that metabolism and function are still intact. Over the past ten years research interest in cerebral ischaemia showed a gradual shift towards cellular biology and pathophysiology. Changes in brain metabolism were considered to be more important than differences in blood flow. The development of new techniques in vitro and in vivo allowed to investigate many different aspects of cellular metabolism. Positron emission tomography was the first in vivo technique which proved that it was possible to obtain regional metabolic information with an acceptable local resolution. Nuclear magnetic resonance, which was introduced in medical research only fifteen years ago, has become a major tropic in brain research. Actually it has become an entire research field with many aspects, including imaging, angiography, and CBF-, energy metabolism-, and intracellular pH-measurement. Several brain metabolites, among which lactate (Berkelbach v. d. Sprenkel 1988 a), can be studied in vivo with proton nuclear magnetic resonance imaging (MRS).


Cerebral Ischaemia Magnetic Resonance Spectroscopy Proton Magnetic Resonance Spectroscopy Spectroscopic Image Cereb Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman JJH, Grove TH, Wong GG, Gadian DG, Radda GK (1980) Mapping of metabolites in whole animals by 31-P NMR using surface coils. Nature 283: 167–170PubMedCrossRefGoogle Scholar
  2. 2.
    Allen K, Busza AL, Crockard HA, Frackowiak RSJ, Gadian DG, Proctor E, Ross Russel RW, Williams SR (1988) Acute cerebral ischaemia: Concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31-P and 1-H nuclear magnetic resonance spectroscopy. III. Changes following ischaemia. J Cereb Blood Flow Metabol 8: 816–821CrossRefGoogle Scholar
  3. 3.
    Behar KL, den Hollander JA, Stromski ME, Ogina T, Shulman RG, Petroff OAC, Prichard JW (1983) High resolution 1-H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci USA 80: 4945–4948PubMedCrossRefGoogle Scholar
  4. 4.
    Berkelbach van der Sprenkel JW (1988 a) Functional and metabolic aspects of cerebral ischaemia, ThesisGoogle Scholar
  5. 5.
    Berkelbach van der Sprenkel JW, Luyten PR, van Rijen PR, Tulleken CAF, den Hollander JA (1988 b) Cerebral lactate detected by regional proton magnetic resonance spectroscopy in a patient with cerebral infarction. Stroke 19: 1556–1560PubMedCrossRefGoogle Scholar
  6. 6.
    Berkelbach van der Sprenkel JW, van Echteld CJA, Benabid AL, Decorps M, Tulleken CAF (1989 a) Marginal ischaemia in the rat: a model with bilateral carotid artery occlusion studied with 31-P and l-H NMR spectroscopy. In: Meyer JS, Lechner H, Reivich M, Toole JF (eds) Cerebrovascular disease 7. Excerpta Medica, Amsterdam, pp 289–296Google Scholar
  7. 7.
    Berkelbach van der Sprenkel JW, van Rijen PC, Luyten PR, den Hollander JA, Tulleken CAF (1989 b) Clinical applications of proton magnetic resonance spectroscopy. In: Meyer JS, Lechner H, Reivich M, Toole JF (eds) Cerebrovascular disease 7. Excerpta Medica, Amsterdam, pp 143–151Google Scholar
  8. 8.
    Berkelbach van der Sprenkel JW, van Rijen PC, Verheul HB, van Echteld CJA, Tulleken CAF (1991) The in vivo relationship between serum glucose and energy rich phosphates, pHi and lactate during progressive forebrain ischaemia in the rat. J Cereb Blood Flow Metabol 11: S 333Google Scholar
  9. 9.
    Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartatic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of the brain. Neurosci Biobehav Rev 13: 23–31PubMedCrossRefGoogle Scholar
  10. 10.
    Bosman DK, Deutz NEP, De Graaf AA, Vd Hulst RWN, van Eijk HMH, Bovee WMMJ, Maas MAW, Jorning GGA, Chamuleau RAFM (1990) Changes in brain metabolism during hyperammonaemia and acute liver failure: Results of a comparative IH-NMR spectroscopy and biochemical investigation. Hepatology 12: 281–290PubMedCrossRefGoogle Scholar
  11. 11.
    Bottomley PA, Edelstein WA, Hart HR, Schenck JF, Smith LS (1984) Spatial localization in 31-P and 13-C NMR spectroscopy in vivo using surface coils. Magn Reson Med 1: 410–413PubMedCrossRefGoogle Scholar
  12. 12.
    Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Cerebral metabolism in man after acute stroke: New observations using localized proton NMR spectroscopy. Magn Reson Med 9: 126–131PubMedCrossRefGoogle Scholar
  13. 13.
    Chopp M, Welch KM, Tidwell CD, Helpern JA (1988) Global cerebral ischaemia and intracellular pH during hyperglycaemia and hypoglycaemia in cats. Stroke 19: 1383–1387PubMedCrossRefGoogle Scholar
  14. 14.
    Crockard HA, Gadian DG, Frackowiak RS, Proctor E, Allen K, Williams SR, Russel RW (1987) Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance, 31-P and 1-H nuclear magnetic resonance spectroscopy. II Changes during ischaemia. J Cereb Blood Flow Metab 7: 394–402PubMedCrossRefGoogle Scholar
  15. 15.
    Damadian R, Mink L, Goldsmith M, et al (1976) Field focussing nuclear magnetic resonance (FOW AR): Visualisation of a tumor in a live animal. Science 194: 1430–1432PubMedCrossRefGoogle Scholar
  16. 16.
    de Graaf AA, Bovée WMMJ (1990) Improved quantification of in vivo 1-H NMR spectra by optimization of signal acquisition and processing and by incorporation of prior knowledge into spectral fitting. Mag Reson Med 15: 305–319CrossRefGoogle Scholar
  17. 17.
    den Hollander JA, Luyten PR (1987) Image guided localized 1-H and 31-P NMR spectroscopy of humans. Ann NY Acad Sci 508: 386–398CrossRefGoogle Scholar
  18. 18.
    Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized high resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9: 79–93PubMedCrossRefGoogle Scholar
  19. 19.
    Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72: 502–508Google Scholar
  20. 20.
    Haase A, Frahm J, Hanicke W, Matthei D (1985) 1-H NMR chemical shift evidence (CHESS) imaging. Phys Med Biol 30: 341–349PubMedCrossRefGoogle Scholar
  21. 21.
    Hope PL, Cady EB, Delphy DT, Ives NK, Gardiner RM, Reynolds EO (1988) Brain metabolism and intracellular pH during ischaemia: Effects of systemic glucose and bicarbonate administration studied by 31-P and 1-H nuclear magnetic resonance spectroscopy in vivo in the lamb. J Neurochem 50: 1394–1402PubMedCrossRefGoogle Scholar
  22. 22.
    Hore PJ (1983) Solvent suppression in Fourier transform nuclear magnetic resonance. J Magn Reson 29: 283–300Google Scholar
  23. 23.
    Houkin K, Kwee IL, Nakada T (1990) Persistent high lactate level as a sensitive MR spectroscopy indicator of complete infarction. J Neurosurg 72: 763–766PubMedCrossRefGoogle Scholar
  24. 24.
    Hoult DI, Busby SJ, Gadian DG, Radda GK (1974) Observation of tissue metabolites using 31-P nuclear magnetic resonance. Nature 252: 285–287PubMedCrossRefGoogle Scholar
  25. 25.
    Jung W-I, Grodd W, Lutz O, Petersen D (1990) Localized 1-H in vivo NMR spectroscopy of small volume elements in human brain at 1.5 T. Magn Reson Med 15: 320–326PubMedCrossRefGoogle Scholar
  26. 26.
    Luyten PR, Groen JP, Vermeulen JWAH, den Hollander JA (1989) Experimental approaches to image localized human 31-P NMR spectroscopy. Magn Reson Med 11: 1–21PubMedCrossRefGoogle Scholar
  27. 27.
    Luyten PR, Marien AJH, Heindel W, van Gerwen PHJ, Herholz K, den Hollander JA, Friedman G, Heiss WD (1990) Metabolic imaging of patients with intracranial tumours: H-1 spectroscopic imaging and PET. Radiology 176: 791–799PubMedGoogle Scholar
  28. 28.
    Morris GA, Freeman R (1978) Selective excitation in Fourier transform nuclear magnetic resonance. J Magn Reson 29: 433–462Google Scholar
  29. 29.
    Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional ischaemia in cats: Comparison of diffusion-and T 2-weighted MRI and spectroscopy. Magn Reson Med 14: 330–346PubMedCrossRefGoogle Scholar
  30. 30.
    Nadler JV, Cooper Jr (1972) N-acetyl-L-aspartatic acid content of human neural tumours and bovine peripheral nervous tissue. J Neurochem 19: 313–319PubMedCrossRefGoogle Scholar
  31. 31.
    Ordidge RJ, Bendall MR, Gordon RE, Connelly A (1985) Volume selection for in vivo spectroscopy. In: Govil, Khetrapal, Saran (eds) Magnetic resonance in biology and medicine. TATA Mc Graw Hill Publishing company Ltd, New Delhi, pp 387–397Google Scholar
  32. 32.
    Patt SL, Sykes BD (1972) T 1 water eliminated fourier transform NMR spectroscopy. J Chem Phys 56: 3182–3184CrossRefGoogle Scholar
  33. 33.
    Petroff OA, Spencer DD, Alger JR, Prichard JW (1989) High field proton magnetic resonance spectroscopy of human cerebrum obtained during surgery for epilepsy. Neurology 39: 1197–1202PubMedGoogle Scholar
  34. 34.
    Prockop LD (1986) Cerebral spinal fluid lactic acid. Neurology 18: 189–196Google Scholar
  35. 35.
    Roth K, Kimber BJ, Freeney J (1980) Data shift accumulation and alternate delay accumulation techniques for overcoming dynamic range problems. J Magn Reson 41: 302–309Google Scholar
  36. 36.
    van Rijen PC, Luyten PR, Berkelbach van der Sprenkel JW, Kraaier V, van Huffelen AC, Tulleken CAF, den Hollander JA (1989) 1-H and 31-P measurement of cerebral lactate, high energy phosphate levels and pH in humans during hyperventilation: associated EEG, capnographic, and Doppler findings. Magn Reson Med 10: 182–193PubMedCrossRefGoogle Scholar
  37. 37.
    van Rijen PC, Tulleken CAF, Marien AJH, den Hollander JA, Luyten PR (1991) Brain metabolite mapping using 1-H NMR spectroscopic imaging in patients with focal cerebral ischaemia. Stroke (in press)Google Scholar
  38. 38.
    van Rijen PC, Verheul HB, van Echteld CJA, Balazs R, Lewis P, Tulleken CAF (1991) Effects of dextromethorphan on rat brain ischaemia and reperfusion assessed by magnetic resonance spectroscopy. Stroke 22: 343–350PubMedCrossRefGoogle Scholar
  39. 39.
    Williams SR, Gadian DG, Proctor EA (1986) A method for lactate detection in vivo by spectral editing without the need for double irradiation. J Magn Reson 66: 562–567Google Scholar

Copyright information

© Springer-Verlag/Wien 1992

Authors and Affiliations

  • J. W. Berkelbach van der Sprenkel
    • 1
  • N. M. J. Knufman
    • 1
  • P. C. van Rijen
    • 1
  • P. R. Luyten
    • 2
  • J. A. den Hollander
    • 3
  • C. A. F. Tulleken
    • 1
  1. 1.Department of NeurosurgeryUniversity Hospital UtrechtUtrechtThe Netherlands
  2. 2.Philips Medical SystemsDA BestThe Netherlands
  3. 3.Centre for NmR Research developmentUniversity of AlabamaBirminghamUSA

Personalised recommendations