Advertisement

About Boltzmann Equations for Transport Modeling in Semiconductors

  • F. Poupaud
Conference paper

Abstract

We present some results on the mathematical analysis of kinetic equations for modelling transport processes in semiconductors. We focus our attention on the connection between the kinetic models and the fluids ones based on drift-diffusion or hydrodynamic equations. Asymptotic analysis gives hydrodynamic coefficients in terms of microscopic quantities and allows to derive accurate boundary conditions.

Keywords

Boltzmann Equation Wigner Function Hydrodynamic Equation Global Weak Solution Robin Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.A. Markowitch, C.A. Ringhoher, C. Schmeiser, Semiconductor Equations, Springer, 1990.Google Scholar
  2. [2]
    R.J. Diperna, P.L. Lions, Global weak solutions of Vlasov Maxwell systems, Corn. Pure Appl. Math. XLII (1989) p 729–757.Google Scholar
  3. [3]
    F. Poupaud, On a system of non linear Boltzmann equation of semiconductor physics, SIAM J. on Appl. Math. 50 n°6 (1990) p 1593–1606.Google Scholar
  4. [4]
    F. Poupaud, Derivation of hydrodynamic models for semiconductors from the Boltzmann equation, Appl. Math. Lett. 4 n° 1 (1991) p 75–79.Google Scholar
  5. [5]
    F. Poupaud, Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory, Z. Angew. Math. Mech. 72 (1992) p 359–372.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    F. Poupaud, C. Schmeiser, Charge Transport in Semiconductors with Degeneracy Effects, Math. Meth. in Appl. Sci. 14 (1991) p 301– 318.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system, Forum Math. 4 (1992) p 499–527.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    A. Nouri, F. Poupaud, Boundary value problems for the stationary VlasovMaxwell-Boltzmann system under Fermi-Dirac statistics, submitted to SIAM J. Math. Anal.Google Scholar
  9. [9]
    F. Golse, F. Poupaud, Limite fluide des équations de Boltzmann des semiconducteurspour une statistique de Fermi-Dirac, J. on Asympt. Analysis 6 (1992) p 135–160.MathSciNetMATHGoogle Scholar
  10. [10]
    P.A. Markowich, N.J. Mauser, F. Poupaud, A Wigner Function Approach to (Semi) classical Limits: Electrons in a Periodic Potential, submitted to J. of Math. Phys.Google Scholar
  11. [11]
    F. Poupaud, A. Yamnahakki, Conditions limites du second ordre pour l’équation de dérive diffusion des semiconducteurs, Internal Report 330 (1993), Lab. J.A. Dieudonné, Univ. de Nice.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • F. Poupaud
    • 1
  1. 1.Laboratoire J.A. DieudonnéURA 168 du CNRS Université de Nice Parc ValroseNice CédexFrance

Personalised recommendations