Advertisement

Thermionic Current in Direct-Indirect Energy-Gap GaAs/AlxGa1-xAs Interfaces

  • D. Tammaro
  • K. Hess
  • F. Capasso
Conference paper

Abstract

Experimental and theoretical studies, on the decrease of the Richardson constant for the thermionic emission in Al-rich (z > 0.45) heterojunctions by more than 3 orders of magnitude reveal that transport in the (100) crystallographic direction, across these interfaces is still an open research field. We present a phenomenological model based on envelope wavefunctions which involves two important transport mechanisms: zero-phonon transitions due to Г - X mixing and phonon-assisted transitions. The model makes use of tunneling calculations and transmission coefficients, evaluated for the above two mechanisms. These coefficients are different from the step function used in the classical theory.

Keywords

Transmission Coefficient Thermionic Emission Thermionic Current Richardson Constant Current Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.M.Solomon, S.L.Wright and C.Lanza Superlattice Microstruct, 2, p.521, 1986, and References therein.CrossRefGoogle Scholar
  2. [2]
    F.Capasso, F.Beltram, J.F.Walker and R.J.Malik IEEE Electr. Dev. Lett. 9,p.377,1988CrossRefGoogle Scholar
  3. [3]
    A.R.Bonnefoi, D.H.Chow and T.C.McGill J.Vac.Sci.Technol. B4, p. 988,1986Google Scholar
  4. [4]
    C.S.Kyono, V.P.Kesan, D.P.Neikirk, C.M.Maziar and B.G.Streetman Appl. Phys. Lett. 54, p.546, 1989CrossRefGoogle Scholar
  5. [5]
    M. Rossmanith, J. Leo, E. Boeckehoff, K. Ploog and von Klitzing Proc. Int.Symp. on the Phys.of Sem. 1990 p.1142Google Scholar
  6. [6]
    F.Beltram, F.Capasso, J.F.Walker and R.J.Malik Appl. Phys. Lett. 53,p.377,1988Google Scholar
  7. [7]
    J.A.Lott, J.F.Klem and H.T.Weaver Appl. Phys. Lett. 55,p.1226, 1989CrossRefGoogle Scholar
  8. [8]
    P.J.Price Surface Sci. 196,p.394–98, 1988Google Scholar
  9. [9]
    A.A.Grinberg Phys. Rev.B. 33,p.7256, 1986CrossRefGoogle Scholar
  10. [10]
    M.Rossmanith, K.Syassen, E.Böckenhoff, K.Ploog and K.von Klitzing Phys. Rev. B 44,p.3168, 1991CrossRefGoogle Scholar
  11. [11]
    H.C.Liu Appl.Phys. Lett. 51, p.1019, 1987CrossRefGoogle Scholar
  12. [12]
    H.A.Bethe MIT Radiat. Lab. Rep. 43–12, 1942Google Scholar
  13. [13]
    C.B.Duke Academic, New York 1969, p.32–59 and References therein.Google Scholar
  14. [14]
    D.Tammaro, K.Hess and F.Capasso to be published in J.AppLPhys. vol. 73, 15 June 1993Google Scholar
  15. [15]
    Z.S.Gribnikov and O.E.Raichev Soy. Phys. Semicond. 23,p.1344, 1989Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • D. Tammaro
    • 1
  • K. Hess
    • 2
  • F. Capasso
    • 3
  1. 1.Dipartimento di ElettronicaPolitecnico di TornioTorinoItaly
  2. 2.Beckman Institute for Advanced Science and Technology and Coordinated Science LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.AT&TMurray HillUSA

Personalised recommendations