Biological Markers for Tumours of the Brain

  • G. J. Pilkington
  • P. L. Lantos
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 21)


Tumours of the central nervous system (CNS) represent a strikingly wide range of derivation, reflecting the histological complexity of the organ in which they arise. Neoplasms may originate from the four main types of neuroepithelium: neuronal, glial, pineal and retinal cells. The single most important and frequent group of neoplasms is the gliomas which can be subdivided, according to the three major cell types, into astrocytomas, oligodendrocytomas and ependymomas. The meninges ensheathing the CNS also give rise to a group of neoplasms, the meningiomas which appear to have an increasingly large number of subtypes. The associated cranial and spinal nerves are the sites of Schwannomas and neurofibromas. The blood vessels permeating neural tissues are hosts of both neoplasms and malformations. Haemopoietic and germ cell tumours may primarily affect the brain. Cysts and other tumour-like lesions often develop in the CNS and local extensions from regional tumours or secondary deposits from distant malignancies are not infrequent complications. In addition, the brain is associated with the pituitary gland and tumours may arise both from the endocrine and neural parts of this organ.


Glial Fibrillary Acidic Protein Pituitary Adenoma Glioblastoma Multiforme Pilocytic Astrocytoma Neurosecretory Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abo T, Balch CM (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127: 1024–1029.PubMedGoogle Scholar
  2. 2.
    Asher R, Bignami A (1992) Hyaluronate binding and CD44 expression in human glioblastoma cells and astrocytes. Exp Cell Res 203: 80–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Bailey P, Cushing H (1926) A classification of the tumours of the glioma groups on a histogenetic basis with a correlated study of sis. Lippincott, Philadelphia.Google Scholar
  4. 4.
    Becker I, Becker K-F, Meyermann R, Hollt V (1991) The multidrug resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol (Berl) 82: 516–519.CrossRefGoogle Scholar
  5. 5.
    Bentley AJ, Parkinson MC, Harding BN, Bains RM, Lantos PL (1990) A comparative morphological and immunohistochemical study of testicular seminomas and intracranial germinomas. Histopathology 17: 443–449.PubMedCrossRefGoogle Scholar
  6. 6.
    Bishop M, de la Monte SM (1989) Dual lineage of astrocytomas. Am J Pathol 135: 517–527.PubMedGoogle Scholar
  7. 7.
    Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124.PubMedCrossRefGoogle Scholar
  8. 8.
    Carter RL, Al-Sam SZ, Corbett RP, Clinton S (1990) A comparative study of immunohistochemical staining for neuron-specific enolase, protein gene product 9.5 and S-100 protein in neuroblastoma, Ewing’s sarcoma and other round cell tumours in children. Histopathology 16: 461–467.PubMedCrossRefGoogle Scholar
  9. 9.
    Celis JE, Celis A (1985) Cell cycle dependent variations in the distribution of the nuclear protein cyclin PCNA in cultured cells-subdivision of S-phase. Proc Natl Acad Sci (USA) 82: 3262–3266.CrossRefGoogle Scholar
  10. 10.
    Choi BH, Kim R (1984) Expression of glial fibrillary acidic protein in immature oligodendroglia. Science 223: 407–409.PubMedCrossRefGoogle Scholar
  11. 11.
    Coca S, Vaquero J, Escandon M, Moreno M, Peralba J, Rodriguez J (1992) Immunohistochemical characterization of pineocytomas. Clin Neuropathol 11: 298–303.PubMedGoogle Scholar
  12. 12.
    Cohn SL, Rademaker AW, Salwen HR, Franklin WA, Gonzales-Crussi F, Rosen ST, Bauer KD (1990) Analysis of DNA ploidy and proliferative activity in relation to histology and N-myc amplification in neuroblastoma. Am J Pathol 136: 1043–1052.PubMedGoogle Scholar
  13. 13.
    Commings DE (1973) A general theory of carcinogenesis. Proc Natl Acad Sci (USA) 70: 2324–2328.CrossRefGoogle Scholar
  14. 14.
    Cox LB (1933) The cytology of the glioma group; with special reference to the inclusion of cells derived from the invaded tissue. Am J Pathol 9: 839–898.PubMedGoogle Scholar
  15. 15.
    Cras P, Martin JJ, Gheuens J (1988) γ-Enolase and glial fibrillary acidic protein in nervous system tumours. Acta Neuropathol (Berl) 75: 377–384.CrossRefGoogle Scholar
  16. 16.
    Crocker J, Nar P (1987) Nucleolar organizer regions in lymphomas. J Pathol 151: 111–118.PubMedCrossRefGoogle Scholar
  17. 17.
    Cruz-Sanchez F, Rossi ML, Finneron PW, Jones NR, Buller J (1990) Oligodendroglioma: an immunohistological and lectin binding study of 27 cases. Neuropath Appl Neurobiol 16: 534–535.Google Scholar
  18. 18.
    Czerwionka M, Korf H-W, Hoffmann O, Busch H, Schachenmayr W (1989) Differentiation in medulloblastomas: correlation between the immunocytochemical demonstration of photoreceptor markers (S-antigen, rod-opsin) and the survival rate in 66 patients. Acta Neuropathol (Berl) 78: 629–636.CrossRefGoogle Scholar
  19. 19.
    Dahl D, Rueger DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57,000 MW protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol 24: 191–196.PubMedGoogle Scholar
  20. 20.
    Daumas-Duport C, Scheithauer BW, Chodkiewicz J-P, Laws Jr ER, Vedrenne C (1988) Dysembryoplastic neuroepithelial tumour: a surgically curable tumor of young patients with intractable partial seizures. Neurosurgery 23: 545–556.PubMedCrossRefGoogle Scholar
  21. 21.
    Deck JHN, Eng LF, Bigbee J, Woodcock SM (1978) The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol (Berl) 42: 183–190.CrossRefGoogle Scholar
  22. 22.
    Delaunoy J-P, Roussel G, Mandel P (1977) Localisation immunohistochimique de l’anhydrase carbonique forme C dans le systeme nerveux central du rat. Cr Hebd Seanc Acad Sci Paris 285: 801–803.Google Scholar
  23. 23.
    Drago J, Reid KL, Bartlett PF (1989) Induction of the ganglioside marker A2B5 on cultured cerebellar neural cells by growth factors. Neurosci Lett 107: 245–250.PubMedCrossRefGoogle Scholar
  24. 24.
    Duffy PE, Graf L, Huang Y-Y, Rapport MM (1979) Glial fibrillary acidic protein in ependymomas and other brain tumors. J Neurol Sci 40: 133–146.PubMedCrossRefGoogle Scholar
  25. 25.
    Duffy PE, Graf L, Rapport MM (1977) Identification of glial fibrillary acidic protein by the immunoperoxidase method in human brain tumors. J Neuropath Exp Neurol 36: 645–652.PubMedCrossRefGoogle Scholar
  26. 26.
    Duffy PE, Huang Y-Y, Rapport MM, Graf L (1980) Glial fibrillary acidic protein in giant cell tumors of the brain and other gliomas. Acta Neuropathol (Berl) 52: 51–57.CrossRefGoogle Scholar
  27. 27.
    Emson PC (1993) In situ hybridization as a methodological tool for the neuroscientist. TINS 16: 9–16.PubMedGoogle Scholar
  28. 28.
    Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28: 351–354.PubMedCrossRefGoogle Scholar
  29. 29.
    Engebraaten O, Bjerkvig R, Morkve O, Laerum O-D, Fredman P, Svennerholm L, Bigner DD (1991) GM2 ganglioside and P53 expression is linked to glio-blastoma cell invasiveness. Proceedings of the Ninth International Conference on Brain Tumor Research and Therapy. Asilomar, California, September J 991.Google Scholar
  30. 30.
    Farmer PM (1979) Electron microscopy in the diagnosis of pituitary tumors. Ann Clin Lab Sci 9: 275–288.PubMedGoogle Scholar
  31. 31.
    Figarella-Branger D, Pellissier JF, Daumas-Duport C, Delisle MB, Pasquier B, Parent M, Gambarelli D, Rougon G, Hassoun J (1992) Central neurocytomas. Critical evaluation of a small-cell neuronal tumor. Am J Surg Pathol 16: 97–109.PubMedCrossRefGoogle Scholar
  32. 32.
    Friede RL, Pollak A (1978) The cytogenetic basis for classifying ependymomas. J Neuropath Exp Neurol 37: 103–118.PubMedCrossRefGoogle Scholar
  33. 33.
    Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–649.PubMedCrossRefGoogle Scholar
  34. 34.
    Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710–1715.PubMedGoogle Scholar
  35. 35.
    Ghobrial M, Ross ER (1986) Immunocytochemistry of neurone-specific enolase: a re-evaluation. In: Zimmermann HM (ed) Progress in neuropathology, Vol 6. Raven, New York pp 199–221.Google Scholar
  36. 36.
    Giangaspero F, Doglioni C, Rivano MT, Pileri S, Gerdes J, Stein H (1987) Growth fraction in human brain tumors defined by the monoclonal antibody Ki-67. Acta Neuropathol (Berl) 74: 179–182.CrossRefGoogle Scholar
  37. 37.
    Girgrah N, Ackerley CA, Moscarello MA (1991) Localization of CD44 (P80) on the external surface of a human astrocytoma cell. NeuroReport 2: 441–444.PubMedCrossRefGoogle Scholar
  38. 38.
    Gould VE, Lee I, Wiedemann B, Moll R, Chejfec G, Franke WW (1986) Synaptophysin: a novel marker for neurons, certain neuro-endocrine cells, and their neoplasms. Hum Pathol 17: 979–983.PubMedCrossRefGoogle Scholar
  39. 39.
    Grove A, Vyberg M (1993) Primary leptomeningeal T-cell lymphoma: a case and a review of primary T-cell lymphoma of the central nervous system. Clin Neuropathol 12: 7–12.PubMedGoogle Scholar
  40. 40.
    Harrison PJ, Pearson RCA (1990) In situ hybridisation histochemistry and the study of gene expression in the human brain. Prog Neurobio 34: 271–312.CrossRefGoogle Scholar
  41. 41.
    Hassoun J, Gambarelli D, Peragut JC, Toga M (1983) Specific ultrastructural markers of human pinealomas. A study of four cases. Acta Neuropathol (Berl) 62: 31–40.CrossRefGoogle Scholar
  42. 42.
    Heitz PU (1987) Neuroendocrine tumor markers. In: Seifert G (ed) Morphological tumor markers. Curr Top Pathol 77: 279-306.Google Scholar
  43. 43.
    Heldin C-H, Westermark B (1989) Platelet-derived growth factor: three isoforms and two receptor types. Trends Gen 5: 108–111.CrossRefGoogle Scholar
  44. 44.
    Herpers MJHM, Budka H (1984) Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors. Gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendroglioma. Acta Neuropathol (Berl) 64: 265–272.CrossRefGoogle Scholar
  45. 45.
    Herpers MJ HM, Ramaekers FCS, Aldeweireldt J, Moesker O, Sloof J (1986) Co-expression of glial fibrillary acidic protein-and vimentin-type intermediate filaments in human astrocytomas. Acta Neuropathol (Berl) 79: 333–339.CrossRefGoogle Scholar
  46. 46.
    Honavar M, Ansari S, Janota I, Polkey CE (1991) Dysembryoplastic neuroepithelial tumour. Neuropath Appl Neurobiol 17: 242–243.Google Scholar
  47. 47.
    Hoshino T, Ahn D, Prados MD, Lamborn K, Wilson CB (1993) Prognostic significance of the proliferative potential of intracranial gliomas measured by bromodeoxyuridine labelling. Int J Cancer 53: 550–555.PubMedCrossRefGoogle Scholar
  48. 48.
    Hurtt MR, Moossy J, Donovan-Peluso M, Locker J (1992) Amplification of epidermal growth factor receptor gene in gliomas: histopathology and prognosis. J Neuropath Exp Neurol 51: 84–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Ito S, Hoshino T, Shibuya M, Prados MD, Edwards MSB, Davis RL (1992) Proliferative characteristics of juvenile pilocytic astrocytomas determined by bromodeoxyuridine labelling. Neurosurgery 31: 413–419.PubMedCrossRefGoogle Scholar
  50. 50.
    John H, Birnstiel M, Jones K (1969) RNA-DNA hybrids at the cytological level. Nature 223: 582–587.PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson HD, Glick AD, Davis BW (1988) Immunohistochemical evaluation of Leu-7, myelin basic protein, S100 protein, glial fibrillary acidic protein and LN3 immunoreactivity in nerve sheath tumors and sarcomas. Arch Path Lab Med 112: 155–160.PubMedGoogle Scholar
  52. 52.
    Kalimo H, Lehto M, Nato-Salonen K, Jalkanen M, Risteli L, Risteli J, Narva EV (1985) Characterization of the perivascular reticulin network in a case of primary brain lymphoma. Acta Neuropathol (Berl) 66: 299–305.CrossRefGoogle Scholar
  53. 53.
    Kepes JJ, Rubinstein LJ (1981) Malignant gliomas with heavily lipidized (foamy) tumor cells. A report of three cases with immunoperoxidase study. Cancer 47: 2451–2459.PubMedCrossRefGoogle Scholar
  54. 54.
    Kepes JJ, Rubinstein LJ, Eng LF (1979) Pleomorphic xanthoastrocytoma: a distinctive meningocerebral glioma of young subjects with relatively favorable prognosis. Cancer 44: 1839–1852.PubMedCrossRefGoogle Scholar
  55. 55.
    Kernohan JW, Habon RF, Svien HJ, Adson AW (1949) A simplified classification of gliomas. Proc Mayo Clin 24: 71–75.PubMedGoogle Scholar
  56. 56.
    Kim DG, Chi JG, Park SH, Chang KH, Lee SH, Jung H-W, Kim HJ, Cho B-K, Choi KS, Han DH (1992) Intraventricular neurocytoma: clinicopathological analysis of seven cases. J Neurosurg 76: 759–765.PubMedCrossRefGoogle Scholar
  57. 57.
    Kleihues P, Burger PC, Scheithauer BW (1993) Histological typing of tumours of the central nervous system. Springer, Berlin Heidelberg New York Tokyo.CrossRefGoogle Scholar
  58. 58.
    Knott JCA, Edwards AJ, Gullan RW, Clarke TM, Pilkington GJ (1990) A human glioma cell line retaining expression of GFAP and gangliosides, recognized by A2B5 and LB1 antibodies, after prolonged passage. Neuropath Appl Neurobiol 16: 489–500.CrossRefGoogle Scholar
  59. 59.
    Knudsen AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci (USA) 68: 820–823.CrossRefGoogle Scholar
  60. 60.
    Knudsen AG (1983) Hereditary cancers in man. Cancer Invest 1: 187–193.CrossRefGoogle Scholar
  61. 61.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibodies of predefined specificity. Nature 256: 495–497.PubMedCrossRefGoogle Scholar
  62. 62.
    Kovacs K, Horvath E (1986) Tumors of the pituitary gland. In: Atlas of tumor pathology, 2nd series, Fascicle 21. AFIP, Bethesda.Google Scholar
  63. 63.
    Kros JM, De Jong AAW, Van der Kwast Th H (1992) Ultrastructural characterization of transitional cells in oligodendroglioma. J Neuropath Exp Neuro 151: 186–193.CrossRefGoogle Scholar
  64. 64.
    Kumanishi T, Washiyama K, Saito T, Nishiyama A, Abe S, Tanaka T, (1986) Primary malignant lymphoma of the brain: an immunohistochemical study of eight cases using a panel of monoclonal and heterologous antibodies. Acta Neuropathol (Berl) 71: 190–196.CrossRefGoogle Scholar
  65. 65.
    Landberg G, Roos G (1991) Antibodies to proliferating cell nuclear antigen as S-phase probes in flow cytometric cell cycle analysis. Cancer Res 51: 4570–4574.PubMedGoogle Scholar
  66. 66.
    Lee V, Wu HL, Schlaepfer WW (1982) Monoclonal antibodies recognise individual neurofilament triplet proteins. Proc Natl Acad Sci (USA) 79: 6089–6092.CrossRefGoogle Scholar
  67. 67.
    Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY (1987) Human retinoblastoma susceptibility gene: cloning, identification and sequence. Science 235: 1394–1399.PubMedCrossRefGoogle Scholar
  68. 68.
    Loffel SC, Gillespie Y, Mirmiran SA, Miller EW, Golden P, Askin FP, Siegel GP (1985) Cellular immunolocalization of S-100 protein within fixed tissue sections by monoclonal antibodies. Arch Pathol Med 109: 117–122.Google Scholar
  69. 69.
    Louis DN, von Deimling A, Chung RY, Rubio M-P, Whaley JM, Eibl RH, Ohgaki H, Wiestier OD, Thor AD, Seizinger BR (1993) Comparative study of p53 gene and protein alterations in human astrocytic tumors. J Neuropath Exp Neurol 52: 31–38.PubMedCrossRefGoogle Scholar
  70. 70.
    Mannoji H, Takeshita I, Fukui M, Ohta M, Kitamura K (1981) Glial fibrillary acidic protein in medulloblastoma. Acta Neuropathol (Berl) 55: 63–69.CrossRefGoogle Scholar
  71. 71.
    Marsden HB, Kumar S, Kahn J, Anderton B (1983) A study of glial fibrillary acidic protein (GFAP) in chidhood brain tumours. Int J Cancer 31: 439–445.PubMedCrossRefGoogle Scholar
  72. 72.
    Martin SM, Landel HB, Lansing AJ, Vijayan VK (1991) Immunocytochemical double labelling of glial fibrillary acidic protein and transferrin permits the identification of astrocytes and oligodendrocytes in the rat brain. J Neuropath Exp Neurol 50: 161–170.PubMedCrossRefGoogle Scholar
  73. 73.
    Matsumoto T, Tani E, Kaba K, Shindo H, Miyaji K (1991) Expression of P-glycoprotein in human glioma cell lines and surgical glioma specimens. J Neurosurg 74: 460–466.PubMedCrossRefGoogle Scholar
  74. 74.
    McCormick D, McQuaid S, McClusker C, Allen IV (1990) A study of glutamine synthetase in normal brain and intracranial tumours. Neuropath Appl Neurobiol 16: 205–211.CrossRefGoogle Scholar
  75. 75.
    Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Comm 19: 739–744.PubMedCrossRefGoogle Scholar
  76. 76.
    Morgello S, Petito CK, Mouradian JA (1990) Central nervous system lymphoma in the acquired immunodeficiency syndrome. Clin Neuropathol 9: 205–215.PubMedGoogle Scholar
  77. 77.
    Motoi M, Yoshino T, Hayashi K, Nose S, Horie Y, Ogawa K (1985) Immunohistochemical studies on human brain tumors using anti-Leu 7 monoclonal antibody in paraffin-embedded sections. Acta Neuropathol (Berl) 66: 75–77.CrossRefGoogle Scholar
  78. 78.
    Murphy JK, O’Brien CJ, Ironside JW (1989) Morphologic and immunophenotypic characterization of primary brain lymphomas using paraffinembedded tissue. Histopathology 15: 449–460.PubMedCrossRefGoogle Scholar
  79. 79.
    Nagashima T, De Armond SJ, Murovic J, Hoshino T (1985) Immunocytochemical demonstration of S-phase cells by anti-BrdU monoclonal antibody in human brain tumor tissues. Acta Neuropathol (Berl) 67: 155–159.CrossRefGoogle Scholar
  80. 80.
    Nakamura Y, Becker LE (1983) Subependymal giant cell tumor: astrocytic or neuronal? Acta Neuropathol (Berl) 60: 271–277.CrossRefGoogle Scholar
  81. 81.
    Newcombe J, Li LH, Cuzner ML (1991) 14E antigen expression in human normal and pathological glial cells. Neuropath Appl Neurobiol 17: 243–244.Google Scholar
  82. 82.
    Norenberg MD (1979) The distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27: 756–762.PubMedCrossRefGoogle Scholar
  83. 83.
    Pardue ML, Gail JG (1969) Molecular hybridization of radioacitve DNA to the DNA of cytological preparations. Proc Nat Acad Sci (USA) 64: 600–604.CrossRefGoogle Scholar
  84. 84.
    Perentes E, Rubinstein LJ (1985) Immunohistochemical recognition of human nerve sheath tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 68: 319–324.CrossRefGoogle Scholar
  85. 85.
    Perentes E, Rubinstein LJ (1986) Immunohistochemical recognition of human neuroepithelial tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 69: 227–233.CrossRefGoogle Scholar
  86. 86.
    Perentes E, Rubinstein LJ (1987) Recent application of immunoperoxidase histochemistry in human neuro-oncology. Acta Pathol Lab Med 111: 796–812.Google Scholar
  87. 87.
    Perentes E, Rubinstein LJ, Herman MM, Donoso LA (1986) S-antigen immunoreactivity in human pineal glands and pineal parenchymal tumors. A monoclonal antibody study. Acta neuropathol (Berl) 71: 224–227.CrossRefGoogle Scholar
  88. 88.
    Pilkington GJ (1992) Glioma heterogeneity in vitro: the significance of growth factors and gangliosides. Neuropath Appl Neurobiol 18: 434–442.CrossRefGoogle Scholar
  89. 89.
    Pilkington GJ, Akinwunmi J, Ognjenovic N, Rogers JP (1993a) Differential binding of anti-CD44 on human gliomas in vitro. NeuroReport 4: 259–262.PubMedCrossRefGoogle Scholar
  90. 90.
    Pilkington GJ, Lantos PL (1982) The role of glutamine synthetase in the diagnosis of cerebral tumours. Neuropath Appl Neurobiol 8: 227–236.CrossRefGoogle Scholar
  91. 91.
    Pilkington GJ, Dunan JR, Rogers JP, Clarke TM, Knott JCA (1993b) Growth factor modulation of surface ganglioside expression in cloned neoplastic glia. Neurosci Lett 149: 1–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Pinkus G, Etheridge CL, O’Connor EM (1986) Are keratin proteins a better tumor marker than epithelial membrane antigen? A comparative immunohistochemical study of various paraffin-embedded neoplasms using monoclonal polyclonal antibodies. Am J Clin Pathol 85: 269.PubMedGoogle Scholar
  93. 93.
    Plate KH, Ruschoff J, Mennel HD (1991) Cell proliferation in intracranial tumours: selective silver staining of nucleolar organizer regions (AgNORs). Application of surgical and experimental neuro-oncology. Neuropath Appl Neurobiol 17: 121–132.CrossRefGoogle Scholar
  94. 94.
    Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker RG, Vertosick FT (1991) Response of low-passage human malignant gliomas in vitro to stimulation and selective inhibition of growth factor-mediated pathways. J Neurosurg 75: 284–293.PubMedCrossRefGoogle Scholar
  95. 95.
    Raff MC, Mirsky R, Fields KL, Lisak RP, Dorfman RP, Silberberg DH, Gregson NA, Liebowitz S, Kennedy M (1978) Galactocerebroside: a specific cell surface antigen marker for oligodendrocytes in culture. Nature 74: 813–816.Google Scholar
  96. 96.
    Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303: 390–396.PubMedCrossRefGoogle Scholar
  97. 97.
    Ramaekers FCS, Puts JJG, Moesker O, Kant A. Huysmans A, Haag D, Jap PHK, Herman CJ, Vooijs GP (1983) Antibodies to intermediate filament proteins in the immunohistochemical identification of human tumours: an overview. Histochem J 15: 691–713.PubMedCrossRefGoogle Scholar
  98. 98.
    Ranscht B, Clapshaw PA, Price J, Noble M, Seifert W (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci (USA) 79: 2709–2713.CrossRefGoogle Scholar
  99. 99.
    Rode J, Dhillon AP, Doran JF, Jackson P, Thompson RJ (1985) PGP 9.5, a new marker for human neuroendocrine tumours. Histopathology 9: 147–158.PubMedCrossRefGoogle Scholar
  100. 100.
    Roessmann U, Velasco ME, Sindely SD, Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunocytochemical study. Brain Res 200: 13–21.PubMedCrossRefGoogle Scholar
  101. 101.
    Rorke LB (1983). The cerebellar medulloblastoma and its relationship to primitive neuroectodermal tumors. J Neuropathol Exp Neurol 42: 1–15.PubMedCrossRefGoogle Scholar
  102. 102.
    Rubinstein LJ (1986) Immunohistochemical signposts—not markers—in neural tumour differentiation. Neuropath Appl Neurobiol 12: 523–537.CrossRefGoogle Scholar
  103. 103.
    Russell DS, Rubinstein LJ (1977) Pathology of tumours of the nervous system, 4th Ed. Edward Arnold, London.Google Scholar
  104. 104.
    Russell DS, Rubinstein LJ (1989) Pathology of tumours of the nervous system, 5th Ed. Edward Arnold, London.Google Scholar
  105. 105.
    Sarawar SR, Bonshek RE, Marsden HB, Yates PO, Kumar S (1991) A monoclonal antibody which discriminates between sub-types of astrocytoma. Anticancer Res 11: 1429–1432.PubMedGoogle Scholar
  106. 106.
    Schachner M, Sommer I, Lagenaur C (1982) Monoclonal antibodies to antigens in the mammalian nervous system. In: Hammerling GJ, Hammerling U, Kearney JF (eds) Monoclonal antibodies and T-cell hybridomas. Elsevier/ North Holland, Amsterdam, pp 130–142.Google Scholar
  107. 107.
    Schiffer D, Giordana MT, Mauro A, Migheli A, Germano I, Giaccone G (1986) Immunohistochemical demonstration of vimentin in human cerebral tumors. Acta Neuropathol (Berl) 70: 209–219.CrossRefGoogle Scholar
  108. 108.
    Schmidek HH (1987) The molecular genetics of nervous system tumors. J Neurosurg 67: 1–16.PubMedCrossRefGoogle Scholar
  109. 109.
    Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop JM (1984) Enhanced expression of the human gene itN-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci (USA) 81: 4940–4944.CrossRefGoogle Scholar
  110. 110.
    Shapiro JR, Yung WKA, Shapiro WR (1981) Isolation, karyotype, and clonal growth of heterogeneous subpopulations of human malignant gliomas. Cancer Res 41: 2349–2359.PubMedGoogle Scholar
  111. 111.
    Sidransky D, Milkkelsen T, Schwecheimer K, Rosenblum ML, Cavenee W, Vogelstein B (1992) Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355: 846–847.PubMedCrossRefGoogle Scholar
  112. 112.
    Siegers HP, Zuber P, Hamou M-F, Van Meile GD, De Tribolet N (1989) The implications of the heterogeneous distribution of Ki-67 labelled cells in meningiomas. Br J Neurosurg 3: 101–108.PubMedCrossRefGoogle Scholar
  113. 113.
    Smith DA, Lantos PL (1985) Immunocytochemistry of cerebellar astrocytomas: with a special note on Rosenthal fibres. Acta Neuropathol (Berl): 66: 155–159.CrossRefGoogle Scholar
  114. 114.
    Sprinkle TJ (1989) 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit Rev Neurobiol 235-301.Google Scholar
  115. 115.
    Steck PA, Saya H (1991) Pathways of oncogenesis in primary brain tumors. Curr Opin Oncol 3: 476–484.PubMedCrossRefGoogle Scholar
  116. 116.
    Takasaki Y, Fishwild D, Tan EM (1984) Characterisation of PCNA recognised by auto antibodies in Lupus sera. J Exp Med 159: 981–992.PubMedCrossRefGoogle Scholar
  117. 117.
    Tan CK, Castillo C, So AG, Downey KM (1986) An auxilliary protein for DNA polymerase alpha from fetal calf thymus. J Biol Chem 261: 1231–1236.Google Scholar
  118. 118.
    Torp SH, Helseth E, Dalen A, Unsgaard G (1991) Epidermal growth factor receptor expression in human gliomas. Cancer Immunol Immunother 33: 61–64.PubMedCrossRefGoogle Scholar
  119. 119.
    Troost D, Blaauwgeers HGT, Leenstra S, Bosch DA (1993). Metallothionein: a marker for protoplasmic astrocytes in brain tumours. Br J Neurosurg 7: 113.Google Scholar
  120. 120.
    Vandenberg SR, May EE, Rubinstein LJ, Herman MM, Perentes E, Vinores SA, Collins VP, Park TS (1987) Desmoplastic supratentorial neuropithelial tumors of infancy with divergent differentiation potential (“desmoplastic infantile gangliogliomas”). J Neurosurg 66: 58–71.PubMedCrossRefGoogle Scholar
  121. 121.
    Virchow R (1846) Ueber das granulierte Ansehen der Wandungen der Gerhirnventrikel. Allg Z Psychiat 3: 242.Google Scholar
  122. 122.
    von Deimling A, Janzer R, Kleihues P, Wiestier OD (1990) Patterns of differentiation in central neurocytoma. Acta Neuropathol (Berl) 79: 473–479.CrossRefGoogle Scholar
  123. 123.
    von Deimling A, Kleihues P, Saremaslani P, Yasargil MG, Spoerri O, Sudhof TC, Wiestier OD (1991) Histogenesis and differentiation potential of central neurocytomas. Lab Invest 64: 585–591.Google Scholar
  124. 124.
    Wachter R, Wittekind C, VonKleist S (1984) Localization of CEA, ß-HCG, SPI, and keratin in the tissue of lung carcinomas. An immunohistochemical study. Virchows Arch 402: 415–420.CrossRefGoogle Scholar
  125. 125.
    Willis R A (1973) The spread of tumours of the human body, 3rd Ed. Butterworths, London.Google Scholar
  126. 126.
    Wilson BS, Lloyd RV (1984) Detection of chromogranin in neuroendocrine cells with a monoclonal antibody. Am J Pathol 115: 458–468.PubMedGoogle Scholar
  127. 127.
    Yates A J (1988) Glycolipids and gliomas. A review. Neurochem Pathol 8: 157–180.PubMedGoogle Scholar
  128. 128.
    Zülch KJ (1965) Brain tumours. Their biology and pathology, 2nd Ed. Heinemann, London.Google Scholar
  129. 129.
    Zülch KJ (1986) Brain tumors. Their biology and pathology, 3rd Ed. Springer, Berlin Heidelberg New York Tokyo.Google Scholar
  130. 130.
    Zülch KJ (ed) (1979) Histological typing of tumours of the central nervous system. International histological classification of tumours, No 21. World Health Orgnanisation, Geneva.Google Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • G. J. Pilkington
    • 1
  • P. L. Lantos
    • 1
  1. 1.Department of NeuropathologyInstitute of PsychiatryLondonUK

Personalised recommendations