Advertisement

Neurochemical and neuroendocrine measures and prediction of outcome to neuroleptic therapy

  • F. Müller-Spahn
  • C. Hock
  • G. Kurtz
Conference paper

Abstract

The early discrimination between responders and non-responders would be of substantial clinical relevance in optimizing neuroleptic therapy. Identification of early predictors of outcome to neuroleptic treatment would be useful for avoiding unnecessary treatment of refractory patients (Harvey et al. 1991). Despite the numerous studies performed to find “markers” of neuroleptic response in acute psychotic patients getting “the right drug for the right patient” has remained an unsolved problem. Although the biological basis of schizophrenia is unknown so far, there is much evidence of an abnormal dopamine (DA) activity being an important factor in schizophrenia. In a recent study, Seeman et al. (1993) reported a sixfold elevation in the density of dopamine D4 receptors in schizophrenia. The dopamine hypothesis, primarily based on the fact that neuroleptics block dopamine receptors and that their ability to displace dopamine antagonists in vitro, correlates significantly with their clinical antipsychotic potencies (Seeman et al. 1976). Although recent advances in biochemical research suggest that several neurotransmitter systems are involved in the pathophysiology of schizophrenia, dysfunctions in the dopaminergic and noradrenergic system are a matter of great significance. This paper will review studies addressing neurochemical and neuroendocrine measures associated with drug response in schizophrenia (Table 1).

Keywords

Schizophrenic Patient Neuroleptic Treatment Bioi Psychiatry Dopamine Hypothesis Neuroleptic Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfredsson G, Wiesel F (1990) Relationships between clinical effects and monoamine metabolites and aminoacids in sulpiride-treated schizophrenic patients. Psychopharmacology 101:324–331.PubMedCrossRefGoogle Scholar
  2. Angrist B, Peselow E, Rotrosen J, Gershon S (1981) Relationships between responders to dopamine agonists, psychopathology, neuroleptic treatment response, and need for neuroleptic maintenance in schizophrenic subjects. In: Angrist G, Burrows C, Lader M, Lingjaerde O, Sedvall G, Wheatley D (eds) Recent advances in neuropsychopharmacology. Pergamon Press, Oxford New York Toronto Sidney Paris Frankfurt, pp 49–54.Google Scholar
  3. Arató M, Bagdy G, Blümel F, Perenyi A, Rihmer Z (1983) Reduced serum dopamine-β-hydroxylase activity in paranoid schizophrenics. Pharmacopsychiatry 16:19–22.CrossRefGoogle Scholar
  4. Bartkó G, Frecska E, Horvath S, Zádor G, Arató M (1990) Predicting neuroleptic response from a combination of multilevel variable in acute schizophrenic patients. Acta Psychiatr Scand 82:408–412.PubMedCrossRefGoogle Scholar
  5. Baumgartner A, Gräf K, Kürten I, Meinhold H (1988) The hypothalamic-pituitary-thyroid axis in psychiatric patients and healthy subjects: parts 1–4. Psychiatry Res 24:271–331.PubMedCrossRefGoogle Scholar
  6. Beasley C, Magnusson M, Garver D (1988) TSH response to TRH and haloperidol response latency in psychoses. Biol Psychiatry 24:423–431.PubMedCrossRefGoogle Scholar
  7. Bondy B, Ackenheil M, Birzle W, Elbers R, Fröhler M (1984) Catecholamines and their receptors in blood: evidence for alterations in schizophrenia. Biol Psychiatry 19:1377–1393.PubMedGoogle Scholar
  8. Bowers M, Swigar M, Jatlow P, Goicoechea N (1984) Plasma catecholamine metabolites and early response to haloperidol. J Clin Psychiatry 45:248–251.PubMedGoogle Scholar
  9. Bowers M, Swigar M, Jatlow P, Hoffmann F (1989) Plasma catecholamine metabolites and treatment response at neuroleptic steady state. Biol Psychiatry 25:734–738.PubMedCrossRefGoogle Scholar
  10. Chang W, Chen T, Lee C, Hung J, Hu W, Yeh E (1988) Plasma homovanillic acid levels and subtyping of schizophrenia. Psychiatry Res 23:239–244.PubMedCrossRefGoogle Scholar
  11. Chang W, Chen T, Lin S, Lung F, Lin W, Hu W, Yeh E (1990) Plasma catecholamine metabolites in schizophrenics: evidence for the two subtype concept. Biol Psychiatry 27:510–518.PubMedCrossRefGoogle Scholar
  12. Creese I, Burt D, Snyder S (1978) Biochemical actions of neuroleptic drugs: focus on the dopamine receptor. In: Iversen S, Snyder S (eds) Handbook of psychopharmacology 10. Plenum Press, New York, pp 37–89.CrossRefGoogle Scholar
  13. Davidson M, Kahn R, Knott P, Kaminsky R, Cooper M, DuMont K, Aptu S, Davis K (1991) Effects of neuroleptic treatment on symptoms of schizophrenia and plasma homovanillic acid concentrations. Arch Gen Psychiatry 48:910–913.PubMedCrossRefGoogle Scholar
  14. Davilla R, Manero E, Zumarraga M, Andia I, Schweitzer J, Friedhoff A (1988) Plasma homovanillic acid as a predictor of response to neuroleptics. Arch Gen Psychiatry 5:564–567.CrossRefGoogle Scholar
  15. Davis K, Davidson M, Mohs R, Kendler K, Davis B, Johns L, DeNigris Y, Horvath T (1985) Plasma homovanillic acid concentration and the severity of schizophrenic illness. Science 227:1601–1602.PubMedCrossRefGoogle Scholar
  16. Davis K, Kahn R, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and recon-ceptualization. Am J Psychiatry 148:1474–1486.PubMedGoogle Scholar
  17. Fleminger S, Jenner P, Marsden C (1982) Are dopamine receptors present on human lym-phozytes? J Pharm Pharmacol 34:658–663.PubMedCrossRefGoogle Scholar
  18. Gaebel W, Maier W (1993) Neurobiological determinants of schizophrenic illness. Concept strategy and method of a research program. Nervenarzt 64:415–426.PubMedGoogle Scholar
  19. Garver D, Kelly K, Fried K, Magnusson M, Hirschowitz J (1988) Drug response patterns as a basis of nosology for the mood-incongruent psychoses (the schizophrenias). Psychol Med 18:873–885.PubMedCrossRefGoogle Scholar
  20. Goldstein M, Freedman L, Ebstein R (1974) Studies on dopamine-α-hydroxylase in mental disorders. J Psychiatr Res 11:205–210.PubMedCrossRefGoogle Scholar
  21. Grodzicki J, Pardo M, Schved G, Schlosberg A, Fuchs S, Kanety H (1990) Differences in (3H)-spiperone binding to peripheral blood lymphozytes from neuroleptic responsive and nonresponsive schizophrenic patients. Biol Psychiatry 27:1327–1330.PubMedCrossRefGoogle Scholar
  22. Harvey P, Davidson M, Powchik P, Schmeidler J, McQueeney R, Kaminsky R, Davis K (1991) Time course and clinical predictors of treatment response in schizophrenia. Schizophr Res 5:161–166.PubMedCrossRefGoogle Scholar
  23. Kiriike N, Izumiya S, Nishiwaki Y, Maeda T, Nagata T, Kawakita Y (1988) TRH test and DST in schizoaffective mania, mania and schizophrenia. Biol Psychiatry 24:415–422.PubMedCrossRefGoogle Scholar
  24. Koreen A, Lieberman J, Alvir J, Mayerhoff D, Loebel A, Chakos M, Amin F, Cooper T (1994) Plasma homovanillic acid in first-episode schizophrenia: psychopathology and treatment response. Arch Gen Psychiatry (in press).Google Scholar
  25. Lambert G, Eisenhofer G, Cox H, Home M, Kaliff V, Kelly M, Jennings G, Esker M (1991) Direct determination of homovanillic acid release from the human brain: an indicator of central dopaminergic activity. Life Sci 49:1061–1072.PubMedCrossRefGoogle Scholar
  26. Langer G, Koinig G, Hatzinger R, Schönbeck G, Resch F, Aschauer H, Keshavan M, Sieghart W (1986) Response of thyrotropin to thyrotropin-releasing hormone as predictor of treatment outcome. Arch Gen Psychiatry 43:861–868.PubMedCrossRefGoogle Scholar
  27. Lefur G, Zarifian E, Phan T (1983) (3H)-spiperidol binding on lymphozytes: changes in two different groups of schizophrenic patients and effect of neuroleptic treatment. Life Sci 32:249–255.CrossRefGoogle Scholar
  28. Lieberman JA, Koreen A (1993) Neurochemistry and neuroendocrinology of schizophrenia: a selective review. Schizophr Bull 19:371–429.PubMedGoogle Scholar
  29. Mazure C, Bowers M, Hoffmann F, Miller K, Nelson J (1987) Plasma catecholamines in subtypes of major depression. Biol Psychiatry 22:1469–1472.PubMedCrossRefGoogle Scholar
  30. Mazure C, Nelson J, Jatlow P, Bowers M (1991) Plasma free homovanillic acid (HVA) as a predictor of clinical response in acute psychosis. Biol Psychiatry 30:475–482.PubMedCrossRefGoogle Scholar
  31. McAllister C, Rapaport M, Pickar D, Paul S (1989) Effect of short-term administration of antipsychotic drugs on lymphozyte subsets in schizophrenic patients. Arch Gen Psychiatry 46:956–957.PubMedCrossRefGoogle Scholar
  32. Müller N, Ackenheil M, Hofschuster E, Mempel W, Eckstein R (1991) Cellular immunity in schizophrenic patients before and during neuroleptic treatment. Psychiatry Res 37:147–160.PubMedCrossRefGoogle Scholar
  33. Müller N, Hofschuster E, Ackenheil M, Eckstein R (1993) T-cells and psychopathology in schizophrenia: relationships to the outcome of neuroleptic therapy. Acta Psychiatr Scand 87:66–71.PubMedCrossRefGoogle Scholar
  34. Müller-Spahn F (1991) Neuroendokrinologie und Schizophrenieforschung. Monographien aus dem Gesamtgebiete der Psychiatrie, Bd. 64. Springer, Berlin Heidelberg New York.Google Scholar
  35. Pandey G, Janicak P, Javoid J, Davis J (1989) Increased 3H-Clonidine binding in platelets of patients with depressive and schizophrenic disorders. Psychiatry Res 28:73–88.PubMedCrossRefGoogle Scholar
  36. Pickar D, Labarca R, Doran A, Wolkowitz O, Roy A, Breier A, Linnoila M, Paul S (1986) Longitudinal measurement of plasma homovanillic acid levels in schizophrenic patients. Arch Gen Psychiatry 4:669–679.CrossRefGoogle Scholar
  37. Roy A, Wolkowitz O, Doran A, Pickar D (1989) TRH test in schizophrenic patients and controls. Biol Psychiatry 25:523–526.PubMedCrossRefGoogle Scholar
  38. Sapri M, Rao B, Chanuabasavanna S (1989) Serum dopamine-β-hydroxylase activity in clinical subtypes of depression. Acta Psychiatr Scand 80:474–478.CrossRefGoogle Scholar
  39. Seeman P, Lee T, Chau Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719.PubMedCrossRefGoogle Scholar
  40. Seeman P, Guan H, Van Toi H (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365:441–445.PubMedCrossRefGoogle Scholar
  41. Sharma R, Javaid J, Janicak P, Comaty J, Davis J, Faull K (1988) Effect of trifluoperazine on CSF and plasma HVA levels in schizophrenic subjects. Am J Psychiatry 145:1480–1481.PubMedGoogle Scholar
  42. Sternberg D, Kammen D, Lerner P, Bunney W (1982) Dopamine-β-hydroxylase and treatment response. Science 216:1432–1435.CrossRefGoogle Scholar
  43. Sternberg D, van Kammen D, Lerner P, Ballenger J, Marder S, Post R, Bunney W (1983) CSF dopamine-β-hydroxylase in schizophrenia. Arch Gen Psychiatry 40:743–747.PubMedCrossRefGoogle Scholar
  44. Van Kammen D, Docherty J, Bunney W (1982) Prediction of early relapse after pimozide discontinuation by response to d-amphetamine during pimozide treatment. Biol Psychiatry 17:233–242.PubMedGoogle Scholar
  45. Van Kammen D, Peters J, van Kammen W, Rosen J, Yao J, McAdam D, Linnoila M (1989) Clonidine treatment of schizophrenia: can we predict treatment response? Psychiatry Res 27:297–311.PubMedCrossRefGoogle Scholar
  46. Van Kammen (1991) The biochemical basis of relapse and drug response in schizophrenia: review and hypothesis. Psychol Med 21:881–895.PubMedCrossRefGoogle Scholar
  47. Van Putten T, Marder S, Aravagiri M, Chabert N, Mintz J (1989) Plasma homovanillic acid as a predictor of response to fluphenazine treatment. Psychopharmacol Bull 1:89–91.Google Scholar
  48. Zemlan F, Hirschowitz J, Sautter F, Garver D (1986) Relationships of psychotic symptom clusters in schizophrenia to neuroleptic treatment and growth hormone response to apomorphine. Psychiatry Res 18:239–255.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • F. Müller-Spahn
    • 1
    • 2
  • C. Hock
    • 1
  • G. Kurtz
    • 1
  1. 1.Psychiatric DepartmentLudwig-Maximilians-UniversityGermany
  2. 2.Psychiatric DepartmentLM-University of MunichMünchenGermany

Personalised recommendations