The Path Integral Monte Carlo Method for Quantum Transport on a Parallel Computer

  • C. Schulz-Mirbach
Conference paper


Based on the Feynman path integral formulation for the time evolution amplitude, we compute the quantum mechanical transition probability for a charge carrier in a semiconductor crystal. Our implementation is performed on a parallel computer (Parsytec GC 64). We discuss the ability of the method to achieve a spatially resolved probability amplitude which is necessary for the analysis of quantum electronic devices. Macroscopic observables are evaluated using this probability function. It complements the conventional distribution function which results from the solution of the semi-classical Boltzmann transport equation.


Quantum Transport Boltzmann Transport Equation Resonant Tunneling Diode Momentum Distribution Function Macroscopic Observable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Massimo V. Fischetti and D. J. DiMaria, “Quantum Monte Carlo Simulation of High-Field Electron Transport: An Application to Silicon Dioxide,” Phys. Rev. Lett., vol. 55, pp. 2475–2478, 1985.CrossRefGoogle Scholar
  2. [2]
    L. F. Register, M. A. Stroscio and M. A. Littlejohn, “Efficient path-integral Monte Carlo technique for ultrasmall device applications,” Superlatt. M., vol. 6, pp. 233–243, 1989.CrossRefGoogle Scholar
  3. [3]
    Hagen Kleinert, “Pfadintegrals in Quantum Mechanics, Statistics and Polymer Physics”, BI-Wiss.-Verl., 1993Google Scholar
  4. [4]
    Malvin H. Kalos and Paula A. Whitlock, “Monte Carlo Methods”, Wiley, 1986Google Scholar
  5. [5]
    Dimitri P. Bertsekas and John N. Tsitsiklis, “Parallel and Distributed Computation”, Prentice-Hall, 1989Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • C. Schulz-Mirbach
    • 1
  1. 1.Arbeitsbereich HochfrequenztechnikTechnische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations