Skip to main content

Scaling of Conventional MOSFET’s to the 0.1-µm Regime

  • Conference paper
Simulation of Semiconductor Devices and Processes

Abstract

As fundamental limits of MOSFET’s are being explored, new device structures have been proposed in order to maintain good short-channel behaviour in the deep submicron regime. These advanced transistors usually require complex channel and source/drain engineering, and will probably not be excepted by industry if the conventional way of scaling is still feasible. The conventional MOSFET is the benchmark for semiconductor industries. This paper addresses some of the issues which are important when conventional MOSFET’s are scaled down to the deep submicron regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Chatterjee, W. Hunter, T. Holloway, and Y. Lin, IEEE Electron Dev. Lett., vol 10, p. 220 (1980).

    Article  Google Scholar 

  2. G. Baccarani, M. Wordeman, R. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 Micrometer MOSFET Design”, IEEE Trans. Electron Devices, vol 31, p. 452 (1984).

    Article  Google Scholar 

  3. H. Hu, J. Jacobs, L. Su, and A. Antoniadis, “A Study of Deep-Submicron MOSFET Scaling Based on Experiment and Simulation”, IEEE Trans. Electron Devices, vol. 42, p. 669 (1995).

    Article  Google Scholar 

  4. J. Slotboom, et al., “Non-Local Impact Ionization in Silicon Devices”, Tech. Digest IEDM, p. 127 (1991).

    Google Scholar 

  5. J. Slotboom, G. Streutker, G. Davids, and P. Hartog, “Surface Impact Ionization in Silicon Devices”, Tech. Digest IEDM, p. 494 (1987).

    Google Scholar 

  6. M. van Dort, J. Slotboom, G. Streutker, and P. Woerlee, “Lifetime Calculations of MOSFET’s using Depth-Dependent Non-Local Impact Ionization”, Microelectronics Journal vol. 26, p. 301 (1995).

    Article  Google Scholar 

  7. P. Woerlee et al., “The Impact on Hot-Carrier Degradation and Supply Voltage of Deep-Submicron NMOS Transistors”, Tech. Digest IEDM, p. 537 (1991).

    Google Scholar 

  8. F. Stern, “Quantum properties of surface space-charge layers”, CRC Crit. Rev. Solid State Sci., p. 499, 1974.

    Google Scholar 

  9. M. van Dort et al, “Quantum-Mechanical Threshold Voltage Shifts of MOSFET’s Caused by High Levels of Channel Doping”, Tech. Digest IEDM, p. 495 (1991).

    Google Scholar 

  10. M. van Dort et al., ‘A Simple Model for Quantisation Effects in Heavily-Doped Silicon MOSFET’s at Inversion Conditions.’ Solid-State Electronics, Vol.37, p. 411 (1994).

    Article  Google Scholar 

  11. K. Nishinohara, N. Shigyo, and T. Wada, “Effects of Microscopic Fluctuations in Dopant Distributions on MOSFET Threshold Voltage”, IEEE Trans. Electron Devices vol 39, p. 634 (1992).

    Article  Google Scholar 

  12. T. Mizuno, J. Okamura, and A. Toriumi, “Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation of Channel Dopant Number in MOSFET’s”, IEEE Trans. Electron Devices vol 41, p. 2216 (1994).

    Article  Google Scholar 

  13. H. Noda, F. Murai, and S. Kimura, “Threshold Voltage Controlled 0.1-µm MOSFET Utilizing Inversion Layer as Extreme Shallow Source/Drain”, Tech. Digest IEDM, p. 123 (1993).

    Google Scholar 

  14. M. Orlowski, C. Mazuré and F. Lau, “Submicron Short Channel Effects due to Gate Reoxidation Induced Lateral Interstitial Diffusion”, Techn. Digest IEDM, p. 632 (1987).

    Google Scholar 

  15. C. Rafferty et al., “Explanation of Reverse Short Channel Effect by Defect Gradients”, Tech.Dig. IEDM, p. 311, 1993.

    Google Scholar 

  16. M. van Dort et al., “Two-Dimensional Transient-Enhanced Diffusion and Its Impact on Bipolar Transistors”, Tech. Dig. IEDM, p 865, 1994.

    Google Scholar 

  17. A. Hori et al., “A 0.05-µm with Ultra Shallow S/D Junctions Fabricated by 5 keV Ion Implantation an Rapid Thermal Annealing”, Tech.Dig. IEDM, p. 485 (1994).

    Google Scholar 

  18. M. van Dort and D. Klaassen, “Sensitivity Analysis of an Industrial CMOS Process using RSM Techniques”, Proc. SISPAD, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Wien

About this paper

Cite this paper

van Dort, M.J., Slotboom, J.W., Woerlee, P.H. (1995). Scaling of Conventional MOSFET’s to the 0.1-µm Regime. In: Ryssel, H., Pichler, P. (eds) Simulation of Semiconductor Devices and Processes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6619-2_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6619-2_91

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7363-3

  • Online ISBN: 978-3-7091-6619-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics