Scaling of Conventional MOSFET’s to the 0.1-µm Regime

  • M. J. van Dort
  • J. W. Slotboom
  • P. H. Woerlee
Conference paper


As fundamental limits of MOSFET’s are being explored, new device structures have been proposed in order to maintain good short-channel behaviour in the deep submicron regime. These advanced transistors usually require complex channel and source/drain engineering, and will probably not be excepted by industry if the conventional way of scaling is still feasible. The conventional MOSFET is the benchmark for semiconductor industries. This paper addresses some of the issues which are important when conventional MOSFET’s are scaled down to the deep submicron regime.


Threshold Voltage Design Rule Inversion Layer Power Supply Voltage Junction Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1]
    P. Chatterjee, W. Hunter, T. Holloway, and Y. Lin, IEEE Electron Dev. Lett., vol 10, p. 220 (1980).CrossRefGoogle Scholar
  2. 2]
    G. Baccarani, M. Wordeman, R. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 Micrometer MOSFET Design”, IEEE Trans. Electron Devices, vol 31, p. 452 (1984).CrossRefGoogle Scholar
  3. 3]
    H. Hu, J. Jacobs, L. Su, and A. Antoniadis, “A Study of Deep-Submicron MOSFET Scaling Based on Experiment and Simulation”, IEEE Trans. Electron Devices, vol. 42, p. 669 (1995).CrossRefGoogle Scholar
  4. 4]
    J. Slotboom, et al., “Non-Local Impact Ionization in Silicon Devices”, Tech. Digest IEDM, p. 127 (1991).Google Scholar
  5. 5]
    J. Slotboom, G. Streutker, G. Davids, and P. Hartog, “Surface Impact Ionization in Silicon Devices”, Tech. Digest IEDM, p. 494 (1987).Google Scholar
  6. 6]
    M. van Dort, J. Slotboom, G. Streutker, and P. Woerlee, “Lifetime Calculations of MOSFET’s using Depth-Dependent Non-Local Impact Ionization”, Microelectronics Journal vol. 26, p. 301 (1995).CrossRefGoogle Scholar
  7. 7]
    P. Woerlee et al., “The Impact on Hot-Carrier Degradation and Supply Voltage of Deep-Submicron NMOS Transistors”, Tech. Digest IEDM, p. 537 (1991).Google Scholar
  8. 8]
    F. Stern, “Quantum properties of surface space-charge layers”, CRC Crit. Rev. Solid State Sci., p. 499, 1974.Google Scholar
  9. 9]
    M. van Dort et al, “Quantum-Mechanical Threshold Voltage Shifts of MOSFET’s Caused by High Levels of Channel Doping”, Tech. Digest IEDM, p. 495 (1991).Google Scholar
  10. 10]
    M. van Dort et al., ‘A Simple Model for Quantisation Effects in Heavily-Doped Silicon MOSFET’s at Inversion Conditions.’ Solid-State Electronics, Vol.37, p. 411 (1994).CrossRefGoogle Scholar
  11. 11]
    K. Nishinohara, N. Shigyo, and T. Wada, “Effects of Microscopic Fluctuations in Dopant Distributions on MOSFET Threshold Voltage”, IEEE Trans. Electron Devices vol 39, p. 634 (1992).CrossRefGoogle Scholar
  12. 12]
    T. Mizuno, J. Okamura, and A. Toriumi, “Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation of Channel Dopant Number in MOSFET’s”, IEEE Trans. Electron Devices vol 41, p. 2216 (1994).CrossRefGoogle Scholar
  13. 13]
    H. Noda, F. Murai, and S. Kimura, “Threshold Voltage Controlled 0.1-µm MOSFET Utilizing Inversion Layer as Extreme Shallow Source/Drain”, Tech. Digest IEDM, p. 123 (1993).Google Scholar
  14. 14]
    M. Orlowski, C. Mazuré and F. Lau, “Submicron Short Channel Effects due to Gate Reoxidation Induced Lateral Interstitial Diffusion”, Techn. Digest IEDM, p. 632 (1987).Google Scholar
  15. 15]
    C. Rafferty et al., “Explanation of Reverse Short Channel Effect by Defect Gradients”, Tech.Dig. IEDM, p. 311, 1993.Google Scholar
  16. 16]
    M. van Dort et al., “Two-Dimensional Transient-Enhanced Diffusion and Its Impact on Bipolar Transistors”, Tech. Dig. IEDM, p 865, 1994.Google Scholar
  17. 17]
    A. Hori et al., “A 0.05-µm with Ultra Shallow S/D Junctions Fabricated by 5 keV Ion Implantation an Rapid Thermal Annealing”, Tech.Dig. IEDM, p. 485 (1994).Google Scholar
  18. 18]
    M. van Dort and D. Klaassen, “Sensitivity Analysis of an Industrial CMOS Process using RSM Techniques”, Proc. SISPAD, 1995.Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • M. J. van Dort
    • 1
  • J. W. Slotboom
    • 1
  • P. H. Woerlee
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations