Advertisement

Coupled 2D-microscopic/macroscopic simulation of nanoelectronic heterojunction devices

  • Carsten Pigorsch
  • Roland Stenzel
  • Wilfried Klix
Conference paper

Abstract

A two dimensional self consistent solution of the Schrödinger and the Poisson equation is obtained. This is coupled with a three dimensional drift-diffusion model to simulate nanometer heterojunction devices with respect to the microscopic properties of the electrons. Some examples of calculated III-V semiconductor structures are represented.

Keywords

Quantum Wire Schrodinger Equation High Electron Mobility Transistor Discrete Energy Level Heterojunction Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. E. Laux, Numerical Methods for Calculating Self-Consistent Solutions of Electron States in Narrow Channels, Proc.of NASECODE V, pp. 270–275, 1987Google Scholar
  2. [2]
    S. E. Laux, A. C. Warren, Self-Consistent Calculation of Electron States in Narrow Channels, IEEE IEDM 1986, pp. 567–570Google Scholar
  3. [3]
    T. Kerkhoven et al., Efficient numerical solution of electron states in quantum wires, J. Appl. Phys., Vol. 68, No. 7, pp.3461–3469, 1990CrossRefGoogle Scholar
  4. [4]
    A. Abou-Elnour, K. Schuenemann, An Efficient and Accurate Self-Consistent Calculation of Electronic States in Modulation Doped Heterostructures, Solid States El., Vol. 37, No. 1, pp. 27–30, 1994CrossRefGoogle Scholar
  5. [5]
    R. Stenzel et al., Device Simulation of Novel In-Plane-Gated Field-Effect Transistors, Jpn. J. Appl. Phys., Vol. 33, No. 3A, pp. 1243–1247, 1994CrossRefGoogle Scholar
  6. [6]
    T. Wang, C. H. Hsieh, Numerical analysis of nonequilibrium electron transport in AlGaAs/InGaAs/GaAs pseudomorphic MODFET’s, IEEE Trans. ED, Vol. 37, No. 9, pp. 1930–1938, 1990CrossRefGoogle Scholar
  7. [7]
    F. Stern, S. Das Sarma, Electron energy levels in GaAs-Ga(1-x)Al(x)As heterojunctions, Physical Review B, Vol. 30, No. 2, pp. 840–848, 1984CrossRefGoogle Scholar
  8. [8]
    J. Sánchez-Dehesa et al., Electronic energy of quantum-well wires, J. Appl. Phys., Vol. 73, No. 10, pp. 5027–5031, 1993CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • Carsten Pigorsch
    • 1
  • Roland Stenzel
    • 1
  • Wilfried Klix
    • 2
  1. 1.Dresden University of Technology and EconomicsDresdenGermany
  2. 2.Dresden University of TechnologyDresdenGermany

Personalised recommendations